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ABSTRACT. We define a notion of inversion valid in the general metric
space setting. We establish several basic facts concerning inversions; e.g.,
they are quasimöbius homeomorphisms and quasihyperbolically bilip-
schitz. In a certain sense, inversion is dual to sphericalization. We
demonstrate that both inversion and sphericalization preserve local qua-
siconvexity and annular quasiconvexity as well as uniformity.
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1. INTRODUCTION

The self-homeomorphism x , x∗ := x/|x|2 of Rn \ {0} (Euclidean n-dimen-
sional space punctured at the origin) is often called inversion or reflection about
the unit sphere centered at the origin. As is well-known, this is a Möbius transfor-
mation and moreover, a quasihyperbolic isometry. Also, a domain Ω ⊂ Rn \ {0}
is a uniform space if and only if its image Ω′ is uniform. Furthermore, as a map
(Ω, k) → (Ω′, k′) between the quasihyperbolizations of Ω and Ω′, inversion is
even 4-bilipschitz; see [18, Theorems 5.11, 5.12]. Observe that we can pull back
Euclidean distance to obtain a new distance on Rn \ {0} via the formula

‖x −y‖ := |x∗ −y∗| =
∣∣∣∣∣ x
|x|2 −

y
|y|2

∣∣∣∣∣ = |x −y|
|x| |y| .

One can find this calculation, e.g., in [2, (3.1.5), p. 26].
In this article we extend the above ideas and results to general metric spaces

(X,d). Given a fixed base point p ∈ X, we define a distance function dp on
Xp := X \ {p} which satisfies

1
4
ip(x,y) ≤ dp(x,y) ≤ ip(x,y) := d(x,y)

d(x,p)d(y,p)
.

Thus our notion of inversion is a direct generalization of inversion on punctured
Euclidean space. The identity map id : (Xp,d) → (Xp,dp) is a quasimöbius
homeomorphism; in particular, the topology induced by dp on Xp agrees with its
original subspace topology. In the metric dp the point p ∈ X has been pushed
out to infinity. See Section 3 for definitions, details and additional elementary
properties.

In [4, Lemma 2.2, p. 87] Bonk and Kleiner define a metric on the one point
compactification of an unbounded locally compact metric space. Their construc-
tion is a generalization of the deformation from the Euclidean distance on Rn to
the chordal distance on its one point compactification. All of the properties of dp
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mentioned above also hold for their construction. Our notion of inversion is, in a
certain sense, dual to the Bonk and Kleiner sphericalization. This duality is a con-
sequence of two ideas: first, just as in the Euclidean setting, sphericalization can be
realized as a special case of inversion (as explained at the end of Subsection 3.B);
second, repeated inversions using the appropriate points produces a space which
is bilipschitz equivalent to the original space.

In fact, we verify the following; see Propositions 3.3, 3.4, 3.5 for precise state-
ments with explicit bilipschitz constants.

The natural identity maps associated with the following processes are
bilipschitz:
• inversion followed by inversion,
• sphericalization followed by inversion,
• inversion followed by sphericalization.

These results are particularly useful when establishing various properties of
inversion and sphericalization, especially with regards to subspaces. For exam-
ple, we corroborate that inversions and sphericalizations are quasihyperbolically
bilipschitz in the following sense; see Theorems 4.6 and 4.11.

If Ω is an open locally c-quasiconvex subspace of Xp, then

both (Ω, k) id
---------------------------------------------→ (Ω, kp) and (Ω, k) id

---------------------------------------------→ (Ω, k̂p) are bi-
lipschitz.

Moreover, the class of uniform subspaces is preserved; see Theorems 5.1 and
5.5.

A subspace is uniform if and only if its inversion is uniform.
The same result is true regarding sphericalization.

In Section 6 we introduce a notion called annular quasiconvexity and demon-
strate that a space is quasiconvex and annular quasiconvex if and only if its in-
version also enjoys these properties. The same result holds for sphericalization.
See Theorems 6.4 and 6.5. Moreover, in the presence of an annular quasicon-
vex ambient space, we obtain improved quantitative information describing how
uniformity constants change; see Theorems 6.7 and 6.8.

In [1] the first author and Balogh investigated a general notion for flatten-
ing and sphericalizing rectifiably connected spaces. Here our definitions are valid
for all metric spaces. For annular quasiconvex spaces, our inversion is bilipschitz
equivalent to the standard flattening. In Section 7, we explain this and briefly
discuss a generalized notion of inversion.

The results in this paper are of great help when it is easier to establish a cer-
tain property for unbounded spaces rather than for bounded spaces, or vice versa.
In particular, the second and third authors, together with Nageswari Shanmu-
galingam [10], make extensive use of our results to establish a characterization for
uniform domains among Gromov hyperbolic domains in terms of whether or not
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a certain natural boundary correspondence is quasimöbius. In one direction, this
result follows quickly for the bounded case; in the other (harder) direction, it is
the unbounded case which is first dealt with.

We are indebted to Nages for suggesting the notion of annular quasiconvexity
and for numerous helpful discussions.

This document is organized as follows: Section 2 contains basic definitions,
terminology, and facts regarding metric spaces and quasihyperbolic distance. In
Section 3 we define inversions and verify a number of useful properties. We inves-
tigate the quasihyperbolic geometry of inversions in Section 4. Our main theorems
establishing the invariance of uniformity under inversion are presented in Section
5. In Section 6 we introduce the notion of annular quasiconvexity, demonstrate
its invariance under inversion, and explain its connection with uniformity. We
conclude by describing a generalized inversion in Section 7.

2. PRELIMINARIES

Here we set forth our basic notation, which is relatively standard, and provide
fundamental definitions. We write C = C(a, . . . ) to indicate a constant C which
depends only on a, . . . . Typically a, b, c, C, K, . . . will be constants that depend
on various parameters, and we try to make this as clear as possible, often giving
explicit values. For real numbers we employ the notation

a∧ b := min{a,b} and a∨ b := max{a,b}.

2.A. General metric space information. In what follows (X,d) will always
denote a non-trivial metric space. For the record, this means that X contains
at least two points and that d is a distance function on X. We often write the
distance between x and y as d(x,y) = |x−y| and d(x,A) is the distance from
a point x to a set A. The open ball (sphere) of radius r centered at the point x
is B(x; r) := {y : |x − y| < r} (S(x; r) := {y : |x − y| = r}). We write
A(x; r ,R) := {y : r ≤ |x − y| ≤ R} for the closed annular ring centered at x
with inner and outer radii r and R, respectively. A metric space is proper if it has
the Heine-Borel property that every closed ball is compact. We let X̄ denote the
metric completion of a metric space X and call ∂X = X̄ \ X the metric boundary
of X. We use (Rn, | · |) to denote Euclidean n-space with Euclidean distance.

It is convenient to introduce the one-point extension of X which is defined via

X̂ :=

X when X is bounded,

X ∪ {∞} when X is unbounded;

a set U ⊂ X̂ is open in X̂ if and only if either U is an open subset of X or X̂ \ U
is a bounded closed subset of X. Thus when X is a proper space, X̂ is simply
its one-point compactification. Given a subspace Z ⊂ X, we write Ẑ and ∂̂Z to
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denote the closure and boundary of Z in X̂; e.g., Ẑ = Z̄ when Z is bounded and
Ẑ = Z̄ ∪ {∞} when Z is unbounded.

A bijection X
f
----------------------------------------→ Y between metric spaces is L-bilipschitz if L ≥ 1 is some

constant and

∀x,y ∈ X : L−1|x −y| ≤ |fx − fy| ≤ L|x −y|.

We write X � Y to mean that X and Y are bilipschitz equivalent. An isometry is
a 1-bilipschitz homemorphism, and we write X ≡ Y to mean that X and Y are
isometric. More generally, f : X → Y is an (L,C)-quasiisometry if L ≥ 1 and
C ≥ 0 are constants with

∀x,y ∈ X : L−1|x −y| − C ≤ |fx − fy| ≤ L|x −y| + C

and

∀z ∈ Y : there are some x ∈ X with |f(x)− z| ≤ C.

An embedding X
f
----------------------------------------→ Y is ϑ-quasimöbius if [0,∞) ϑ

----------------------------------------→ [0,∞) is a homeomor-
phism and for all quadruples x, y , z, w of distinct points in X,

|x,y, z,w| := |x −y| |z −w|
|x − z| |y −w| ≤ t ⇒ |fx, fy, fz, fw| ≤ ϑ(t).

These mappings were introduced and investigated by Väisälä in [15].
A geodesic in X is the image ϕ(I) of some isometric embedding R ⊃ I ϕ

------------------------------------------------→ X
where I is an interval; we use the phrases segment, ray, or line (respectively) to
indicate that I is bounded, semi-infinite, or all of R. A metric space is geodesic
if each pair of points can be joined by a geodesic segment. Given two points x
and y on an arc α (the homemorphic image of an interval), we write α[x,y] to
denote the subarc of α joining x and y .

A metric space is rectifiably connected provided each pair of points can be
joined by a rectifiable path. Such a space (X,d) admits a natural intrinsic metric,
its so-called length distance given by

l(x,y) := inf{`(γ) : γ a rectifiable path joining x, y in X};

here `(γ) denotes the length of γ. We call (X,d) a length space provided d(x,y) =
l(x,y) for all points x, y ∈ X; it is also common to call such a d an intrinsic
distance function.

A path α with endpoints x, y is c-quasiconvex, c ≥ 1, if `(α) ≤ cd(x,y).
A metric space (X,d) is c-quasiconvex if each pair of points can be joined by a c-
quasiconvex path. We say that (X,d) is locally quasiconvex provided it is connected
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and for each x ∈ X there is a constant cx ≥ 1 and an open neighborhood Ux of x
with the property that every pair of points inUx can be joined by a cx-quasiconvex
path. We say X is locally c-quasiconvex if it is locally quasiconvex with cx = c for
all x ∈ X.

By cutting out any loops, we can always replace a c-quasiconvex path with a
c-quasiconvex arc. Fortunately, this intuitively clear idea has been made precise
by Väisälä; see [17].

Since |x − y| ≤ l(x,y) for all x, y , the identity map (X, l) id
---------------------------------------------→ (X,d) is

Lipschitz continuous. It is important to know when this map will be a homeo-
morphism (cf. [3, Lemma A.4, p. 92]). Observe that if X is locally quasiconvex,
then id : (X, l) → (X,d) is a homeomorphism; X is quasiconvex if and only if
this map is bilipschitz.

2.B. Quasihyperbolic distance. The quasihyperbolic distance in an incom-
plete locally compact rectifiably connected space (X,d) is defined by

k(x,y) = kX(x,y) := inf
γ
`k(γ) := inf

γ

∫
γ

|dz|
d(z, ∂X)

where the infimum is taken over all rectifiable paths γ which join x, y in X. Here
X is incomplete, so ∂X 6= ∅, and d(z, ∂X) is the distance from z ∈ X to the
boundary ∂X of X. We note that, as long as the identity map (X, l) → (X,d) is a
homemorphism, (X, k) will be complete, proper and geodesic; see [3, Proposition
2.8].

We call the geodesics in (X, k) quasihyperbolic geodesics. We remind the reader
of the following basic estimates for quasihyperbolic distance, first established by
Gehring and Palka [8, Lemma 2.1], but see also [3, (2.3), (2.4)]:

k(x,y) ≥ log

(
1+ l(x,y)

d(x, ∂X)∧ d(y, ∂X)

)

≥ log

(
1+ |x −y|

d(x, ∂X)∧ d(y, ∂X)

)
≥
∣∣∣∣∣log

d(x, ∂X)
d(y, ∂X)

∣∣∣∣∣ .
Lemma 2.1. Suppose (X,d) is a locally c-quasiconvex, incomplete locally com-

pact rectifiably connected space. Then each x ∈ X has an open neighborhood U with
the property that

∀y ∈ U : k(x,y) ≤ log
d(x, ∂X)

d(x, ∂X)− c|x −y| .

Proof. Fix x and let U = Ux be the promised neighborhood in which points
can be joined by c-quasiconvex arcs. Let y ∈ U ∩ B(x; d(x, ∂X)/2c) and let
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α be an arc joining x, y with L = `(α) ≤ c|x − y|. Then for each z ∈ α,
d(z, ∂X) ≥ d(x, ∂X)− `(α[z,x]) and thus

k(x,y) ≤ `k(α) ≤
∫ L
s=0

ds
d(x, ∂X)− s

= log
d(x, ∂X)

d(x, ∂X)− L ≤ log
d(x, ∂X)

d(x, ∂X)− c|x −y| . ❐

3. METRIC SPACE INVERSIONS

Here we define what we mean by the inversion Invp(X) of a metric space X with
respect to a point p ∈ X. This comes with an associated distance function dp,
and we shall see that the ‘identity’ map X̂ \ {p} → Invp(X) is 16t-quasimöbius.
Moreover, the composition of a suitable pair of inversions gives a bilipschitz map,
which is analagous to the fact that Euclidean space inversions have order 2.

In a certain sense, our definition is dual to a similar construction of Bonk and
Kleiner; see [4, p. 87], Subsection 3.B, and Propositions 3.4, 3.5.

3.A. Definitions and basic properties. Let (X,d) be a metric space and fix
a base point p ∈ X. Consider the quantity

ip(x,y) := d(x,y)
d(x,p)d(y,p)

,

which is defined for x, y ∈ Xp := X \ {p}; sometimes this is a distance function,
but in general it may not satisfy the triangle inequality. For instance, if we supply
X = R2 with the l1 metric d(x,y) = |x1 −y1| + |x2 −y2|, where x = (x1, x2)
and y = (y1, y2), then taking p = (0,0), u = (1,0), v = (0,1), andw = (1,1),
we find that ip(u,v) = 2 but ip(u,w)+ ip(w,v) = 1.

Fortunately there is a standard technique which forces the triangle inequality:
we define

dp(x,y) := inf
{ k∑
i=1

ip(xi, xi−1) : x = x0, . . . , xk = y ∈ Xp
}
.

We shall see below in Lemma 3.1 that for all x, y ∈ Xp,

(3.1)
1
4
ip(x,y) ≤ dp(x,y) ≤ ip(x,y) ≤ 1

d(x,p)
+ 1
d(y,p)

.

In particular, we deduce that dp is an honest distance function on Xp. Moreover,
we see that when our original space (X,d) is unbounded, there is a unique point
p′ in the completion of (Xp,dp) which corresponds to the point∞ in X̂. (Indeed,
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any unbounded sequence in (Xp,d) is a Cauchy sequence in (Xp,dp), and any
two such sequences are equivalent.) Because of this phenomenon, we define

(Invp(X),dp) := (X̂p, dp) = (X̂ \ {p}, dp)
and we call (Invp(X),dp) the inversion of (X,d) with respect to the base point p.
For example, with this definition, Invp(X) will be complete (or proper) whenever
X is complete (or proper). Notice that other properties, such as connectedness and
local compactness, are not necessarily preserved; e.g., connectedness is reversed for
the subsets [−1,1] and R\(0,1) of the Euclidean line when they are inverted with
respect to the origin.

The distance function dp on Xp extends in the usual way to X̂p. Alternatively,
when X is unbounded, we can define

∀x ∈ Xp : ip(x,p′) = ip(x,∞) := 1
d(x,p)

,

and then check that the definition of dp(x,y) using auxiliary points in Xp is the
same as using points in X̂p.

The metric quantities in Invp(X) are denoted by using a subscript p. For
example: Bp(x; r) and Ap(x; r ,R) are a dp-ball and a dp-annular ring centered
at x, respectively; dp(x,A), diamp(A), and `p(γ) are the dp-distance from a
point to a set, the dp-diameter of a set, and the dp-length of a path, respectively.

As an elementary example, the reader can confirm from our definitions that
Inv0(Rn) ≡ Rn, or more precisely,

(Inv0(Rn), | · |0) = (R̂n0 ,‖ · ‖) ≡ (Rn, | · |),
where—as in Section 1—the isometry is provided by the standard inversion x ,
x∗ = x/|x|2 (with ∞ ∈ R̂n0 , i.e., 0′ ∈ Inv0(Rn), corresponding to 0) and |x −
y|0 = ‖x −y‖ = |x∗ −y∗|.

Frink [5] employed a similar chaining argument to get a metric comparable to
an original quasimetric which was also smaller by at most a factor of 4. Mineyev
[13] has used ip(x,y) to define a new metric on the one point complement of
the Gromov boundary of hyperbolic complexes. Ibragimov [11] has studied the
geometry of Euclidean domainsD using the so-called Cassinian metric cD(x,y) =
supp∈∂D ip(x,y).

Here are some elementary properties of inversion. The proofs of parts (a)
and (b), which are essentially the same as in [4, Lemma 2.2], are included for the
reader’s convenience; (b) generalizes the fact that inversions in Euclidean spaces
are Möbius transformations.

Lemma 3.1. Let (X,d) be a metric space and fix a base point p ∈ X.
(a) The inequalities in (3.1) hold for all points x, y ∈ Invp(X). In particular, dp

is a distance function on Invp(X).
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(b) The identity map (Xp,d)
id
---------------------------------------------→ (Xp,dp) is a 16t-quasimöbius homemorphism.

(c) Invp(X) is bounded if and only if p is an isolated point in (X,d) in which case

diamXp
d(p,Xp)+ diamXp

1
8 d(p,Xp)

≤ diamp Invp(X) ≤ 2
d(p,Xp)

.

Proof. (a) It suffices to verify the inequalities in (3.1) for x, y ∈ Xp, for if
X is unbounded and one of these points happens to be p′, then we simply look
at the appropriate limit. The right hand inequalities there follow directly from
the definitions of dp and ip. In order to prove the left most inequality, we define
hp : Xp → [0,∞) by hp(z) = 1/d(z,p); then ip(x,y) = hp(x)hp(y)d(x,y).
We assume d(x,p) ≤ d(y,p), so hp(x) ≥ hp(y).

Let x0, . . . , xk be an arbitrary sequence of points in Xp with x0 = x and
xk = y . We consider two cases. If hp(xi) ≥ 1

2hp(x) for all i, then the triangle
inequality applied to d gives

k∑
i=1

ip(xi, xi−1) ≥ 1
4
hp(x)2

k∑
i
d(xi, xi−1)

≥ 1
4
d(x,y)hp(x)hp(y) = 1

4
ip(x,y).

Suppose instead that there exists some j ∈ {0, . . . , k} such that hp(xj) <
1
2hp(x). Note that from the definitions, |hp(u) − hp(v)| ≤ ip(u,v) for u,
v ∈ Xp. Since d(x,p) ≤ d(y,p), d(x,y) ≤ 2d(y,p), so ip(x,y) ≤ 2hp(x).
Thus again we arrive at

k∑
i=1

ip(xi, xi−1) ≥
k∑
i=1

|hp(xi)− hp(xi−1)| ≥ 1
2
hp(x) ≥ 1

4
ip(x,y).

(b) This follows from (3.1) by observing that whenever x, y , z,w is a quadru-
ple of distinct points in Xp,

dp(x,y)dp(z,w)
dp(x, z)dp(y,w)

≤ 16
ip(x,y)ip(z,w)
ip(x, z)ip(y,w)

= 16
d(x,y)d(z,w)
d(x, z)d(y,w)

.

(c) It is straightforward to see that Invp(X) is unbounded precisely when p
is a non-isolated point in X. Finally, suppose δ = d(p,Xp) > 0. The estimates
in (3.1) immediately give diamp Invp(X) ≤ 2/δ. For the lower estimate, we may
assume that diamXp > 0. Let 0 < ε < δ ∧ diam(Xp) and pick a,b ∈ Invp(X)
with d(a,p) ≤ δ + ε and d(a,b) ≥ (diamXp − ε)/2. Then d(b,p) ≤ δ +
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diamXp + ε, so

diamp Invp(X) ≥ dp(a, b) ≥ 1
4

d(a,b)
d(a,p)d(b,p)

≥ diamXp − ε
8(δ+ ε)(δ+ diamXp + ε) .

Letting ε → 0 we deduce the asserted lower bound. ❐

3.B. Sphericalization. As mentioned already, our definition of Invp(X)
mimics a construction of Bonk and Kleiner [4, Lemma 2.2, p. 87]. We briefly
recall their work. Let (X,d) be any metric space, fix a base point p ∈ X, and
consider

sp(x,y) := d(x,y)
[1+ d(x,p)][1+ d(y,p)]

which is defined for x, y ∈ X. Sometimes this is a distance function, but in
general it may not satisfy the triangle inequality, so we define

d̂p(x,y) := inf
{ k∑
i=1

sp(xi, xi−1) : x = x0, . . . , xk = y ∈ X
}
.

Then for all x, y ∈ X,

(3.2)
1
4
sp(x,y) ≤ d̂p(x,y) ≤ sp(x,y) ≤ 1

1+ d(x,p) +
1

1+ d(y,p) .

In particular, d̂p is a distance function on X and the map (X,d) id
---------------------------------------------→ (X, d̂p) is a

16t-quasimöbius homemorphism. Moreover, we see that when our original space
X is unbounded, there is a unique point p̂ in the completion of (X, d̂p) which
corresponds to the point ∞ in X̂. We define the sphericalization of (X,d) with
respect to the base point p by

(Sphp(X), d̂p) := (X̂, d̂p).

The distance function d̂p on X extends in the usual way to X̂. Alternatively,
when X is unbounded, we define

∀x ∈ Xp : sp(x, p̂) = sp(x,∞) := 1
1+ d(x,p) ,

and then check that the definition of d̂p(x,y) using auxiliary points in X is the
same as using points in X̂. Note too that the metric topology induced by d̂p on
X̂ is the one-point extension topology; that is, the identity map Sphp(X) → X̂ is
a homemorphism.
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The metric quantities in Sphp(X) are denoted by using both a ĥat and a

subscript p. For example: B̂p(x; r) and Âp(x; r ,R) are a d̂p-ball and a d̂p-
annular ring centered at x, respectively; d̂p(x,A), d̂iamp(A), ˆ̀

p(γ) are the d̂p-
distance from a point to a set, the d̂p-diameter of a set and the d̂p-length of a
path, respectively.

An elementary example is provided by

(Sph0(R
n), ˆ| · |0) = (R̂n, ˆ| · |0) � (Sn, | · |) ⊂ (Rn+1, | · |);

we check that stereographic projection (R̂n, ˆ| · |0)→ (Sn, | · |) is 16-bilipschitz by
using the estimate

√
1+ t2 ≤ 1+ t ≤ √2

√
1+ t2 which is valid for all t ≥ 0.

The inequalities in (3.2) continue to hold for all points in X̂. Moreover,

d̂iamp Sphp(X) ≤ 1

since d(x,p)+ d(y,p) ≤ [1+ d(x,p)][1+ d(y,p)]), and

d̂iamp Sphp(X) ≥


d̂p(p, p̂) ≥ 1

4
when X is unbounded,

1
4

diamX
2+ diamX

when X is bounded.

The lower bound for bounded X follows by estimating d̂p(x,p) where d(x,p) >
(diam(X)− ε)/2, and then letting ε → 0.

There is a more significant relation between inversion and sphericalization:
the latter is a special case of the former. Fix p ∈ X. Put Xq := X t {q}, the
disjoint union of X and some point q, and define dp,q : Xq ×Xq → R by

dp,q(x,y) := dp,q(y,x) :=


0 if x = q = y,
d(x,y) if x 6= q 6= y,
d(x,p)+ 1 if x 6= q = y.

Then (Xq,dp,q) is a metric space and (Invq(Xq), (dp,q)q) is (isometric to)
(Sphp(X), d̂p).

Note that this idea of viewing sphericalization as a special case of inversion is
a direct analog of the Euclidean setting where stereographic projection from R̂n

to Sn can be viewed as inversion about the sphere S(en+1;
√

2) ⊂ Rn+1; see, e.g.,
[2, Ex.8 on p. 27 or Subsection 3.4].

If we wish to restrict attention to quasiconvex spaces, it is useful to define
sphericalization as a special case of inversion by adding a line segment to X rather
than a single point q. Let X(0,1] := X t (0,1] and consider the distance dp,(0,1]
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which restricts to d on X, restricts to the Euclidean metric on (0,1], and satisfies
dp,(0,1](x, t) = d(x,p)+ t for points x ∈ X and t ∈ (0,1]. As before, if we let q
denote the point 1 in X(0,1], then (Invq(X(0,1]) \ (0,1), (dp,(0,1])q) is (isometric
to) (Sphp(X), d̂p).

3.C. Elementary mapping properties. Here we examine the effects of in-
version followed by another inversion or sphericalization, and sphericalization fol-
lowed by inversion. We demonstrate that the associated natural identity maps are
bilipschitz.

Before embarking on this investigation, we mention that inversions and spher-
icalizations are local quasidilations in the following sense. For p ∈ X and 0 < r ≤
R we have

∀x,y ∈ A(p; r ,R) :

d(x,y)
4R2 ≤ dp(x,y) ≤ d(x,y)

r 2 ,

d(x,y)
4(1+ R)2 ≤ d̂p(x,y) ≤

d(x,y)
(1+ r)2 .

It is possible to use these inequalities to show that inversions and sphericaliza-
tions both preserve local quasiconvexity. See Proposition 4.2 for an alternative
argument.

We record one more elementary observation.

Lemma 3.2. SupposeX
f
----------------------------------------→ Y isK-bilipschitz. Then the induced maps Invp(X) →

Invf(p)(Y) and Sphp(X)→ Sphf(p)(Y) are 4K3-bilipschitz.

Recall that when X is unbounded and p ∈ X, we denote by p′ and p̂ the
points in Invp(X) and Sphp(X) (respectively) which correspond to ∞ in X̂. In
this setting we have

∀x ∈ Xp :
1
4

1
d(x,p)

≤ dp(x,p′) ≤ 1
d(x,p)

,(3.3)

∀x ∈ X :
1
4

1
1+ d(x,p) ≤ d̂p(x, p̂) ≤

1
1+ d(x,p) .(3.4)

Now we turn our attention to repeated inversions. Suppose X is unbounded.
Let p ∈ X and (Y , e) = (Invp(X),dp). Since p′ is a non-isolated point of Y ,
Invp′(Y) = Ŷp′ is unbounded. When Y is bounded, Ŷ = Y = X̂p, so Ŷp′ = Yp′ =
Xp and there is a natural identity map

Xp
id
---------------------------------------------→ Invp′(Invp X) when X is unbounded and p is isolated.

On the other hand, suppose Y is unbounded (i.e., p is a non-isolated point in X).
Then p ∈ X corresponds to p′′ ∈ Invp′(Y), the unique point in the completion



Metric Space Inversions, Quasihyperbolic Distance, Uniform Spaces 849

of (Yp′ , ep′) which corresponds to ∞ in Ŷ . Thus, Ŷ = X̂ and Ŷp′ = X, so there is
a natural identity map

X id
---------------------------------------------→ Invp′(Invp X) when X is unbounded and p is non-isolated

(again, where p ∈ X corresponds to p′′).
With the above conventions in place, we now establish an analogue of the fact

that Euclidean space inversions have order two.

Proposition 3.3. Let (X,d) be an unbounded metric space. Fix p ∈ X and let
p′ ∈ Y = Invp(X) correspond to ∞ ∈ X̂. Let d′ = (dp)p′ denote the distance on
Invp′(Y) = Invp′(Invp X).
(a) If p is a non-isolated point, then the identity map

(X,d) id
---------------------------------------------→ (X,d′) = (Invp′(Y), d′)

(where p , p′′) is 16-bilipschitz.

(b) If p is isolated, then the identity map (Xp,d)
id
---------------------------------------------→ (Xp,d′) = (Invp′(Y), d′) is

16-bilipschitz.

Proof. We establish (a); the proof for (b) is similar and simpler. Recalling
(3.3), and noting that there are similar inequalities with p, p′, d, dp replaced by
p′, p′′, dp, d′ respectively, we see that for x ∈ Yp′ = Xp,

d(x,p)
4

≤ 1
4dp(x,p′)

≤ d′(x,p′′) ≤ 1
dp(x,p′)

≤ 4d(x,p).

Next, for x, y ∈ Xp we have

d′(x,y) ≤ dp(x,y)
dp(x,p′)dp(y,p′)

≤ d(x,y)
d(x,p)d(y,p)

· 4d(x,p) · 4d(y,p) = 16d(x,y)

and similarly d′(x,y) ≥ d(x,y)/16. ❐

Our next two results illustrate how inversion is in a certain sense dual to spher-
icalization. First we examine the effect of sphericalization followed by inversion.
Suppose X is unbounded, p ∈ X, Y = Sphp(X) = X̂. Then p̂ ∈ Y is a non-
isolated point, so Invp̂(Y ) is also unbounded and as sets, Invp̂(Y ) = Ŷp̂ = X.
Thus there is a natural identity map

X id
---------------------------------------------→ Invp̂(Sphp X) when X is unbounded.
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Proposition 3.4. Let (X,d) be an unbounded metric space and fix p ∈ X. Put
Y = Sphp(X) and let d′ = (d̂p)p̂ denote the distance on Invp̂(Y ) = Invp̂(Sphp X).

Then the identity map (X,d) id
---------------------------------------------→ (Invp̂(Y ), d′) = (X,d′) is 16-bilipschitz.

Proof. Let x, y ∈ X. Then

d′(x,y) ≤ d̂p(x,y)
d̂p(x, p̂)d̂p(y, p̂)

≤ 16[1+ d(x,p)]d̂p(x,y)[1+ d(y,p)] ≤ 16d(x,y)

and similarly,

d′(x,y) ≥ d̂p(x,y)

4d̂p(x, p̂)d̂p(y, p̂)

≥ 1
4
[1+ d(x,p)]d̂p(x,y)[1+ d(y,p)] ≥ 1

16
d(x,y). ❐

Since sphericalization is a special case of inversion, the previous lemma also
follows from Proposition 3.3: first add an isolated point q to X to get Xq, then
invert with respect to q to get Invq(Xq) ≡ Sphp(X), and then invert with respect
to q′ = p̂ (the point ∞ in X̂); thus Invp̂(Sphp X) is just the iterated inversion
Invq′(Invq Xq).

Next we examine the effect of inversion followed by sphericalization. Re-
call that for an unbounded space, any sphericalization has diameter in [ 1

4 ,1]. As
above, let p ∈ X and suppose Y = Invp(X) = X̂ is unbounded. Given any q ∈ Y ,
we see that p corresponds to q̂, the unique point in the completion of (Y , êq)
which corresponds to ∞ in Ŷ . Thus Sphq(Y) = Ŷ = X̂ (= X if X is bounded)
and there is a natural identity map

X̂ id
---------------------------------------------→ Sphq(Invp X) when p is non-isolated

where p ∈ X corresponds to q̂ (and ∞ corresponds to p′ if X is unbounded).

Proposition 3.5. Let (X,d) be a metric space with diam(X) = 1. Suppose p
is a non-isolated point in X and there exists a point q ∈ X with d(p, q) ≥ 1

2 . Put
(Y , e) = (Invp(X),dp). Then

(X,d) id
---------------------------------------------→ (Sphq(Y), êq) = (X, êq) (where p , q̂)

is 256-bilipschitz.
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Proof. Here êq is obtained from

tq(x,y) := e(x,y)
[1+ e(x, q)][1+ e(y, q)]

in the same manner that d̂p is obtained from sp. First we check that

∀x ∈ Xp :
1
4
d(x,p) ≤ tq(x, q̂) ≤ 4d(x,p).

Let x ∈ Xp. We have

tq(x, q̂) = 1
1+ dp(x, q) ≤

4d(x,p)d(q,p)
4d(x,p)d(q,p)+ d(x, q)

≤ 4d(x,p)d(q,p)
2d(x,p)+ d(x, q) ≤ 4d(x,p)

and

tq(x, q̂) = 1
1+ dp(x, q) ≥

d(x,p)d(q,p)
d(x,p)d(q,p)+ d(x, q)

≥ 1
2

d(x,p)
d(x,p)+ d(x, q) ≥

1
4
d(x,p).

Since tq(x, q̂)/4 ≤ êq(x, q̂) ≤ tq(x, q̂), the above yields

∀x ∈ Xp :
1
16
d(x,p) ≤ êq(x, q̂) ≤ 4d(x,p).

Finally, we consider points x, y ∈ Xp. Notice that

tq(x,y) = dp(x,y)
[1+ dp(x, q)][1+ dp(y, q)]

= tq(x, q̂)dp(x,y)tq(y, q̂).

The estimates from above produce d(x,y)/64 ≤ tq(x,y) ≤ 16d(x,y) from
which it follows that d(x,y)/256 ≤ êq(x,y) ≤ 16d(x,y). ❐

In general, when X is any bounded metric space and p ∈ X is non-isolated, the
map

(X,d) id
---------------------------------------------→ (Sphq(Invp X), êq) where e = dp
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is still bilipschitz, but the distortion constant will always depend on diam(X)
(because d̂iam Sphq(Y) ≤ 1) and may also depend on d(p, q). For an example to
see the latter dependence, invert X = [0,1] with respect to p = 0 and take q close
to p.

3.D. Subspaces and notation. For later use, here we set forth some nota-
tional conventions. Let Ω be an open subspace of (X,d). When ∂Ω 6= ∅, we let
δ(x) = δΩ(x) := d(x, ∂Ω) denote the distance (in (X,d)) from a point x to ∂Ω.

If Ω ⊂ Xp = X \ {p} for some fixed base point p ∈ X, we can view Ω as a
subspace of (Invp(X),dp) or (Sphp(X), d̂p). To indicate this we write Ip(Ω) :=
(Ω, dp) or Sp(Ω) := (Ω, d̂p). Then

∂pΩ, δp(x) := dp(x, ∂pΩ) and ∂̂pΩ, δ̂p(x) := d̂p(x, ∂̂pΩ)
denote the boundary of Ω and the distance to it in (Invp(X),dp) and in
(Sphp(X), d̂p), respectively. Notice that ∂Ωp = ∂Ω \ {p} when Ω is bounded,
whereas if Ω is unbounded, ∂Ωp = (∂Ω \ {p})∪ {p′}.

We conclude this (sub)section with estimates for various distances to bound-
aries.

Lemma 3.6. Let Ω ⊂ Xp = X \ {p} (for some fixed base point p ∈ X) be an
open subspace of (X,d). Then for all x ∈ Ω:

δp(x) ≥ 1
8

(
1

d(x,p)
∧ δ(x)
d(x,p)2

)
,(a)

δ(x) ≥ 1
2

(
d(x,p)∧ δp(x)d(x,p)2

)
,(b)

δ̂p(x) ≥ 1
16

(
1

1+ d(x,p) ∧
δ(x)

[1+ d(x,p)]2

)
,(c)

δ(x) ≥ 1
4

([
1+ d(x,p)]∧ (δ̂p(x)[1+ d(x,p)]2)).(d)

Proof. For each part, we would like to choose a closest boundary point. Since
these may not exist, we must use an approximation argument. We do this explic-
itly only for part (a). If any of these distances to the boundary are infinite, there
is nothing to prove, so we assume they are all finite. Parts (c) and (d) are not
needed in this paper but are included as they may be of use elsewhere; we leave
their proofs to the reader.

(a) Let ε > 0. Select a ∈ ∂pΩ with δp(x) ≥ dp(x,a)−ε. If Ω is unbounded
and a = p′, then δp(x) + ε ≥ dp(x,p′) ≥ 1/(4d(x,p)). Assume either Ω is
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bounded or a 6= p′. If d(a,p) ≤ 2d(x,p), then

ip(x,a) ≥ 1
2
d(x,a)
d(x,p)2 ≥

1
2

δ(x)
d(x,p)2

so

δp(x)+ ε ≥ 1
8

δ(x)
d(x,p)2 .

If d(a,p) ≥ 2d(x,p), then d(x,a) ≥ d(a,p)− d(x,p) ≥ 1
2d(a,p), so

ip(x,a) ≥ 1
2

1
d(x,p)

and, again,

δp(x)+ ε ≥ 1
8

1
d(x,p)

.

Letting ε → 0 yields the asserted conclusion.

(b) Suppose a ∈ ∂Ω gives δ(x) = d(x,a). If d(a,p) ≤ d(x,p)/2, then
δ(x) ≥ d(x,p) − d(a,p) ≥ d(x,p)/2. Assume d(a,p) ≥ d(x,p)/2. Then
a 6= p, so a ∈ ∂pΩ and therefore

δp(x) ≤ dp(x,a) ≤ ip(x,a) ≤ 2
d(x,a)
d(x,p)2 = 2

δ(x)
d(x,p)2 . ❐

4. INVERSIONS AND QUASIHYPERBOLIC DISTANCE

Our main goal here is to establish Theorem 4.6 which asserts that inversions in-
duce bilipschitz maps when viewed in the associated quasihyperbolic metrics. As
a consequence we obtain Theorem 4.11 which says that the same holds for spher-
icalizations.

4.A. Linear distortion. Suppose X
f
----------------------------------------→ Y is a map between metric spaces

and let x ∈ X be a non-isolated point of X. We write

L(x, f ) := lim sup
y→x

d(f(x), f (y))
d(x,y)

,

l(x, f ) := lim inf
y→x

d(f(x), f (y))
d(x,y)

to denote the maximal and minimal stretching of f at x respectively.
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Proposition 4.1. Given p ∈ X, the identity map (Xp,d)
id
---------------------------------------------→ (Xp,dp) satisfies

for each non-isolated point x ∈ Xp : l(x, id) = L(x, id) = d(x,p)−2.

Proof. Fix x ∈ Xp and put t = d(x,p). The fact that L(x, id) ≤ 1/t2 fol-
lows easily from the inequalitydp(x,y) ≤ ip(x,y) = d(x,y)/[d(x,p)d(y,p)].
The lower bound l(x, id) ≥ 1/4t2 follows similarly from the inequality dp(x,y) ≥
ip(x,y)/4, but we need to estimate a little more carefully to get rid of the 4.

Let 0 < ε < 1
8 and assume 0 < d(x,y) < ε2t. Notice that

d(x,y)
(1+ ε)2t2 <

d(x,y)
(1+ ε)t2 <

ε2t
(1+ ε)t2 <

ε
8t
<

1
8t
.

Let x = x0, . . . , xk = y ∈ Xp. If d(xi, p) ≤ (1+ ε)t for all 0 ≤ i ≤ k, then

k∑
i=1

ip(xi, xi−1) ≥
k∑
i=1

d(xi, xi−1)
(1+ ε)2t2 ≥ d(x,y)

(1+ ε)2t2 .

Suppose there exists j ∈ {1, . . . , k− 1}, such that d(xj, p) > (1+ ε)t. Then

k∑
i=1

ip(xi, xi−1) ≥
j∑
i=1

ip(xi, xi−1) ≥ dp(x,xj) ≥ 1/4ip(x,xj).

If d(xj, p) > 2t, then d(x,xj) > t, so d(xj, p) ≤ 2d(x,xj); therefore ip(x,xj)/4 ≥
1/8t. On the other hand, if d(xj, p) ≤ 2t, then, since d(x,xj) ≥ εt,

1
4
ip(x,xj) = 1

4
d(x,xj)
td(xj, p)

≥ 1
4

εt
td(xj, p)

≥ ε
8t
.

Thus in all cases

k∑
i=1

ip(xi, xi−1) ≥ d(x,y)
(1+ ε)2t2 ;

so

dp(x,y)
d(x,y)

≥ 1
(1+ ε)2t2 .

Letting ε → 0, we obtain l(x, id) ≥ 1/t2, as required. ❐
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The result above (in conjunction with Fact 4.3(a) and [14, 5.3]) tells us how to
calculate the length of a path in Invp(X); that is, for each rectifiable path γ in Xp
we have

(4.1) `p(γ) =
∫
γ

|dx|
d(x,p)2 .

In other words, |dx|p = |dx|/d(x,p)2 where |dx| and |dx|p denote the ar-
clength differentials in X and Invp(X) respectively. Below we provide a simple
consequence of this fact. See Proposition 6.3 for more information regarding qua-
siconvexity and inversions.

Proposition 4.2. If (X,d) is locally c-quasiconvex and p ∈ X, then (Xp,dp)
and (X, d̂p) are both locally 5c-quasiconvex.

Proof. Let ε > 0 be a small number to be chosen below. Fix x ∈ Xp. As-
sume r = εd(x,p) has the property that points in B(x; r) are joinable by c-
quasiconvex paths. Let y , z ∈ B(x; r) and select such a path α joining y , z.
Note that

dp(y, z) ≥ ip(y, z)
4

≥ d(y, z)
4[(1+ ε)d(x,p)]2 .

Now each point u on α is at most 1
2`(α) from one of y or z, so d(u,x) ≤

(c + 1)r and thus

[1− ε(c+ 1)]d(x,p) = d(x,p)− (c+ 1)r ≤ d(u,p) ≤ [1+ ε(c+1)]d(x,p).

Therefore

`p(α) ≤ cd(y, z)
([1− ε(c + 1)]d(x,p))2 ≤ 4c

[(1+ ε)d(x,p)]2

([1− ε(c + 1)]d(x,p))2dp(y, z).

The desired result follows by choosing ε small enough so that both r = εd(x,p)
has the assumed property and also ((1+ ε)/[1− ε(c + 1)])2 ≤ 5

4 .
The proof for (X, d̂p) is similar and left for the reader. ❐

Note that when X is unbounded, neither Invp(X) nor Sphp(X) need be lo-
cally quasiconvex at p′ or p̂. For example, when we sphericalize the curve X =
{(x,y) ∈ R2 : y = √x sinx, 0 ≤ x < ∞} (with its induced Euclidean distance)
with respect to the origin p = (0,0), we find that d̂p((nπ,0), p̂) is compara-
ble with 1/n, but for the associated length metric l̂p, we have l̂p((nπ,0), p̂) '
1/n1/2; both comparisons are with constants independent of n ∈ N.

Here is some useful information from [18, Lemmas 5.3, 5.5].
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Facts 4.3.

(a) If X
f
----------------------------------------→ Y is a homeomorphism and x ∈ X is non-isolated, then

L(x, f ) = 1/l(f (x), f−1) and l(x, f ) = 1/L(f (x), f−1),

where we use the convention that 1/0 = ∞, 1/∞ = 0.
(b) Suppose X

f
----------------------------------------→ Y g

---------------------------------------→ Z are continuous and x, f(x) are non-isolated points of X,
Y respectively. Then

L(x,g ◦ f) ≤ L(x, f )L(f (x), g),
l(x, g ◦ f) ≥ l(x, f )l(f (x), g),

provided that the products are not of the form 0 · ∞ or ∞ · 0.

(c) Suppose X is c-quasiconvex and X
f
----------------------------------------→ Y satisfies L(x, f ) ≤ M for all x ∈ X.

Then f is cM-Lipschitz.

The following stretching estimates are an easy consequence of Lemma 2.1 in
conjunction with the basic lower bound for quasihyperbolic distance.

Lemma 4.4. Suppose (X,d) is a locally c-quasiconvex incomplete locally compact
space. Then the identity map id : (X,d) → (X, k) satisfies

∀x ∈ X :
1

d(x, ∂X)
≤ l(x, id) ≤ L(x, id) ≤ c

d(x, ∂X)
.

Corollary 4.5. Suppose (X,d)
f
----------------------------------------→ (Y ,d′) is a K-bilipschitz homeomorphism

between locally c-quasiconvex incomplete locally compact spaces. Then as a map
(X, k) → (Y , k′), f is cK2-bilipschitz.

Proof. Since f and f−1 are both K-Lipschitz (hence uniformly continuous),
they have extensions to X̄ and Ȳ and we find that f : (X̄, d) → (Ȳ , d′) is
K-bilipschitz. Moreover, for all x ∈ X, K−1 d(x, ∂X) ≤ d′(fx, ∂Y) ≤ K d(x, ∂X).

Let (X,d) i
---------------------------→ (X, k) and (Y ,d′)

j
--------------------------------→ (Y , k′) be the indicated identity maps.

Put g = j ◦ f ◦ i−1. Since (X, k) and (Y , k′) are geodesic, an appeal to Fact
4.3(c) reveals that we need only check that L(x,g) ≤ cK2 and L(y,g−1) ≤ cK2

for x ∈ X and y ∈ Ȳ respectively. Using Facts 4.3(a,b) and Lemma 4.4 we find
that

L(x,g) ≤ L(f(x), j) · L(x, f ) · L(x, i−1)

≤ c
d′(f (x), ∂Y)

·K · d(x, ∂X) ≤ cK2.

Similarly, L(y,g−1) ≤ cK2. ❐
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4.B. Inversions are quasihyperbolically bilipschitz. Let (X,d) be com-
plete and fix p ∈ X. Suppose Ω ⊂ Xp is a locally compact, open, rectifiably
connected subspace of X. Then (Invp(X),dp) is also complete and Ip(Ω) is a
locally compact, open, rectifiably connected subspace of Invp(X). We further
assume that when Ω is bounded, ∂Ω 6= {p}, so ∂pΩ 6= ∅. We denote the quasi-
hyperbolic metric in Ip(Ω) by kp. (The reader should perhaps review Subsection
3.D.)

We demonstrate that inversions are bilipschitz with respect to quasihyperbolic
distances, and we provide explicit quantitative bounds on the bilipschitz constant
in various cases.

Theorem 4.6. Let (X,d) be complete and fix a base point p ∈ X. Suppose Ω ⊂
Xp is a locally compact, open, locally c-quasiconvex subspace with ∂Ω 6= ∅ 6= ∂pΩ.

Then the identity map (Ω, k) id
---------------------------------------------→ (Ω, kp) isM-bilipschitz, whereM = 2c(a∨20b),

a =


1 if Ω is unbounded,

diamΩ
[d(p, ∂Ω)∨ (diam ∂Ω/2)] if Ω is bounded.

and

b =



b′ if X is b′-quasiconvex,

1 if p ∈ ∂Ω,
2 d(p, ∂Ω)

d(p,Ω) if p 6∈ Ω̄.
Proof. Here we refer to Facts 4.3(a, b, c) simply as (a), (b), (c). Since (Ω, k)

and (Ω, kp) are geodesic spaces, (c) tells us it suffices to check that

∀x ∈ Ω : L(x, id) ≤ M and L(x, id−1) ≤ M.

Let (Ω, d) h
---------------------------------------→ (Ω, dp), (Ω, d) i

---------------------------→ (Ω, k), (Ω, dp) j
--------------------------------→ (Ω, kp), denote the respec-

tive identity maps. Then id = j ◦ h ◦ i−1 and id−1 = i ◦ h−1 ◦ j−1. Thus (b)
yields

L(x, id) ≤ L(x, j) · L(x,h) · L(x, i−1) ,

L(x, id−1) ≤ L(x, i) · L(x,h−1) · L(x, j−1) .

According to Proposition 4.1, in conjunction with (a), we have

L(x,h) = 1
d(x,p)2 and L(x,h−1) = d(x,p)2.
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Since Ω is locally c-quasiconvex, Proposition 4.2 says Ip(Ω) is locally 5c-quasi-
convex. An appeal to Lemma 4.4 together with (a) now produces

L(x, i) ≤ c
δ(x)

, L(x, i−1) ≤ δ(x),

L(x, j) ≤ 5c
δp(x)

, L(x, j−1) ≤ δp(x).

The observations above reveal that it suffices to demonstrate that

∀x ∈ Ω : δ(x) ' δp(x)d(x,p)2;

more precisely, we must establish

∀x ∈ Ω : 5cδ(x) ≤Mδp(x)d(x,p)2 and cδp(x)d(x,p)2 ≤ Mδ(x).

Recalling the definition of M and the estimates from Lemma 3.6, we see that the
above inequalities are equivalent to

∀x ∈ Ω : δp(x) ≤ a
d(x,p)

and δ(x) ≤ bd(x,p).

Let x ∈ Ω be arbitrary.
We begin by showing that δ(x) ≤ bd(x,p). This is clear if p ∈ ∂Ω, and

also evident when X is b′-quasiconvex (look at a b′-quasiconvex path joining x
to p). Suppose p 6∈ Ω̄. Select q ∈ ∂Ω with d(p, q) ≤ d(p, ∂Ω)+ ε, where ε > 0
is small. Since d(p, ∂Ω) ≥ d(p,Ω), we may assume that δ(x) ≥ 2d(x,p). Then

2d(x,p) ≤ δ(x) ≤ d(x, q) ≤ d(x,p)+ d(p, q),

so

d(p, q) ≥ d(x,p)

and hence

δ(x) ≤ d(x, q) ≤ 2d(p, q) ≤ 2
d(p, ∂Ω)+ ε

d(p,Ω) d(p,Ω)
≤ 2

d(p, ∂Ω)+ ε
d(p,Ω) d(x,p).

Letting ε → 0 we obtain δ(x) ≤ bd(x,p) as asserted.
Our proof for the case when Ω is unbounded is now complete, because in

this situation we have p′ ∈ ∂pΩ and then (3.3) provides the desired estimate
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δp(x) ≤ 1/d(x,p). ( ¨̂ ) Thus we assume that Ω is bounded. (Recall that in this
case we have the additional assumption ∂Ω 6= {p} to ensure that ∂pΩ 6= ∅.) We
seek the estimate δp(x) ≤ a/d(x,p).

Select q ∈ ∂Ω so that d(p, q) ≥ λdiam ∂Ω, where 0 < λ < 1
2 . Then

δp(x) ≤ dp(x, q) ≤ d(x, q)
d(q,p)

1
d(x,p)

≤ diamΩ
d(q,p)

1
d(x,p)

.

We now have three possibilities. If diam ∂Ω = 0, then ∂Ω = {q} and the above
inequality becomes

δp(x) ≤ diamΩ
d(p, ∂Ω) 1

d(x,p)
.

On the other hand, if diam ∂Ω > 0, then—by our choice of q and letting λ → 1
2

—our initial inequality yields

δp(x) ≤ 2
diamΩ

diam ∂Ω 1
d(x,p)

.

Finally, if diam ∂Ω > 0 but p 6∈ Ω̄, then our previous inequality is also in force
because d(p, q) ≥ d(p, ∂Ω). ❐

We remark that in general the bilipschitz constantM in Theorem 4.6 may depend
on the indicated data. Before exhibiting our examples, we point out that the ideas
from our proof yield the following: If the identity map (Ω, k) → (Ω, kp) is M-
bilipschitz, then

∀x ∈ Ω :
1
cM

δ(x) ≤ δp(x)d(x,p)2 ≤ 5cMδ(x).

In the examples below we use complex variables notation, D = {z ∈ C :
|z| < 1} is the open unit disk in the complex number field C and T = ∂D is the
unit circle. We also take advantage of the fact, mentioned in the introduction,
that Euclidean inversion enjoys the property dp = ip. First we show that M may
depend on the ratio diamΩ/diam ∂Ω.

Example 4.7. Let X = D̄ be the closed unit disk in C (with Euclidean dis-
tance) and consider Ω = X \ {p,q} where p = 0 is the origin and q = −t with
t ∈ (0,1). Then diamΩ = 2, diam ∂Ω = t, and for points x ∈ [1− t,1) ⊂ Ω we
find that

δ(x) = d(x,p) = x ,

δp(x) = dp(x, q) = ip(x, q) = x + t
xt

≥ 1
xt
.
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Therefore, if the identity map (Ω, k) → (Ω, kp) is M-bilipschitz, then

5Mx = 5Mδ(x) ≥ δp(x)d(x,p)2 ≥ x
t
,

and so

M ≥ 1
5t
= 1

10
diamΩ

diam ∂Ω .
Next we show that M may depend on the ratio diamΩ/d(p, ∂Ω).
Example 4.8. Let X = T be the unit circle, t ∈ (0, π/2) and

Ω = {eiθ : t < θ < 2π − t}.

Then Ω is locally (π/2)-quasiconvex. Put p = 1 ∈ X, q = eit and x = −1. Then
diamΩ = 2, d(p, ∂Ω) = |p − q|, δ(x) = |q + 1|, d(x,p)2 = 4, and

δp(x) = dp(x, q) = ip(x, q) = |q + 1|
2|p − q| .

Therefore if the identity map (Ω, k)→ (Ω, kp) is M-bilipschitz, then

5π
2
M|q + 1| = 5cMδ(x) ≥ δp(x)d(x,p)2 = 4|q + 1|

2 |p − q| ,

and so

M ≥ 2
5π

diamΩ
d(p, ∂Ω) .

Last we show that M may depend on the ratio d(p, ∂Ω)/d(p,Ω).
Example 4.9. Fix 0 < t < 1, put X = [−1,1]∪[ti,2i] ⊂ C, let p = 2ti ∈ X,

and consider Ω = (−1,1) ⊂ X. Then d(p, ∂Ω) = √1+ 4t2 and d(p,Ω) = 2t.
Taking x = 0, we find that

δ(x) = 1, d(x,p) = 2t, δp(x) = dp(x,1) = ip(x,1) = (2t
√

1+ 4t2)−1

and thus if the identity map (Ω, k)→ (Ω, kp) is M-bilipschitz, then

1 = δ(x) ≤ Mδp(x)d(x,p)2 = M 4t2

2t
√

1+ 4t2
,

and so

M ≥
√

1+ 4t2

2t
= d(p, ∂Ω)

d(p,Ω) .
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Now we take an attentive look at Theorem 4.6 in the special case where Ω is
bounded and p ∈ ∂Ω; here our identity map is M-bilipschitz with M = 4c[10 ∨
(diamΩ/diam ∂Ω)]. The point of the following result is that the constant L
depends only on c, while the just mentioned bilipschitz constant M in general
depends on both c and diamΩ/diam ∂Ω.

Corollary 4.10. Let (X,d) be proper and fix a base point p ∈ X. SupposeΩ ⊂ Xp is an open locally c-quasiconvex subspace with diam ∂Ω > 0 (so, ∂Ω 6= ∅ 6=
∂pΩ). Assume further that Ω is bounded and p ∈ ∂Ω. Then for all x, y ∈ Ω,

kp(x,y) ≤ 40ck(x,y)+Dp ,
k(x,y) ≤ 10ckp(x,y)+D

where D = diamk(A), Dp = diamkp(A) and A = {z ∈ Ω : d(z,p) ≥ 2 diam ∂Ω}.
In particular, the map id : (Ω, k) → (Ω, kp) is an (L,C)-quasiisometry, where L =
40c and C = Dp ∨ (D/10c).

Proof. As noted above, we may assume that diamΩ ≥ 10 diam ∂Ω (for other-
wise id is 40c-bilipschitz). Set B = B(p; 2 diam ∂Ω); then ∂Ω ⊂ B and A = Ω \ B
is a non-empty compact subset of Ω (so D and Dp are finite). For x ∈ B ∩Ω we
have δp(x) ≤ 5/d(x,p). This, together with a careful reading of the proof of
Theorem 4.6, reveals that

∀x ∈ B ∩Ω : L(x, id) ≤ 40c and L(x, id−1) ≤ 10c,

which in turns implies that for each rectifiable arc α in B ∩Ω,

(10c)−1`k(α) ≤ `kp(α) ≤ 40c`k(α).

Fix two points x, y ∈ Ω. Assume at first that x, y ∈ B. Let γ be an oriented
k-geodesic from x to y . Denote by x′ and y ′ the first and last points of γ in A.
Since the subarcs γ[x,x′] and γ[y,y ′] lie in B ∩Ω, it follows that

kp(x,x′) ≤ `kp(γ[x,x′]) ≤ 40c`k(γ[x,x′]) = 40ck(x,x′);

similarly, kp(y,y ′) ≤ 40ck(y,y ′) (and clearly kp(x′, y ′) ≤ Dp). Conse-
quently,

kp(x,y) ≤ kp(x,x′)+ kp(x′, y ′)+ kp(y ′, y)
≤ 40c[k(x,x′)+ k(y ′, y)]+Dp ≤ 40ck(x,y)+Dp.

Notice that if x (or y) lies in A, then the inequalities above continue to hold
provided we put x′ = x (or y ′ = y , or both).

Employing the same argument, but starting with a kp-geodesic from x to y ,
we obtain the inequality k(x,y) ≤ 10ckp(x,y)+D. ❐
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In general, quantitative bounds for the constants D and Dp above are not avail-
able; indeed, simple examples reveal that it is possible for D (and so C too) to be
arbitrarily large if diamΩ/diam ∂Ω is large. However, from the above proof we
obtain the following estimates which are valid for all x, y ∈ Ω∩B(p; 2 diam ∂Ω):

kp(x,y) ≤ 40ck(x,y)+ diamkp(S) ,

k(x,y) ≤ 10ckp(x,y)+ diamk(S) ,

where S = {z ∈ Ω : d(z,p) = 2 diam ∂Ω}. The point here is that when X
is annular quasiconvex (see Section 6) we can find estimates for diamk(S) and
diamkp(S) in terms of the associated data.

We close this subsection by reporting that the sphericalization construction
of Bonk and Kleiner also produces a quasihyperbolically bilipschitz identity map.
We write k̂p for the quasihyperbolic metric in Sp(Ω). (The reader should perhaps
review Subsection 3.D.)

Theorem 4.11. Let (X,d) be complete and fix a base point p ∈ X. SupposeΩ ⊂ X is a locally compact, open, locally c-quasiconvex subspace with ∂Ω 6= ∅. Then
the identity map id : (Ω, k) → (Ω, k̂p) is bilipschitz. When Ω is unbounded and
p ∈ ∂Ω, we get the bilipschitz constant 80c.

Proof. The general result follows from Theorem 4.6 since sphericalization is
a special case of inversion. Indeed, as explained at the end of Subsection 3.B,
we have (Sphp(X), d̂p) isometric to (Invq(Xq), (dp,q)q). Note that distance to
the boundary of Ω is the same regardless of which ambient space (X or Xq) we
consider, so there is only one quasihyperbolic distance associated with (Ω, d) =
(Ω, dp,q). Also, the quasihyperbolic distance in Iq(Ω) is just k̂p. Finally, whenΩ is unbounded and p ∈ ∂Ω, our bilipschitz constant M = 2c(a ∨ 20b) is
80c since a = 1 and b = 2. (In fact, the careful reader will notice that, since
δ(x) ≤ d(x,p) < dp,q(x, q), the proof of Theorem 4.6 actually provides the
bilipschitz constant 40c.) ❐

5. INVERSIONS AND UNIFORMITY

Here we demonstrate that both inversion and sphericalization preserve the class
of uniform subspaces; see Theorems 5.1, 5.5. We also provide quantitative in-
formation describing precisely how the new uniformity constants depend on the
associated data.

5.A. Uniform subspaces. Roughly speaking, a space is uniform provided
points in it can be joined by paths which are not too long and which stay away
from the region’s boundary (so-called quasiconvex twisted double cone arcs). Uni-
form domains in Euclidean space were first studied by John and Martio and Sarvas
who proved injectivity and approximation results for them. They are well recog-
nized as being the nice domains for quasiconformal function theory as well as
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many other areas of geometric analysis (e.g., potential theory); see [6] and [16]
for various references. Every (bounded) Lipschitz domain is uniform, but generic
uniform domains may very well have fractal boundary. Recently, uniform subdo-
mains of Heisenberg groups, as well as more general Carnot groups, have become
a focus of study. Bonk, Heinonen and Koskela [3] introduced the notion of uni-
formity in the general metric space setting.

Before we continue, we comment on the difference between our definition of
uniformity and the one seen elsewhere in the metric space literature, notably in
[3]. The usual definition involves a given locally compact rectifiably connected
incomplete space (U,d), whose boundary is defined to consist of all points in
Ū \ U . We instead consider locally compact rectifiably connected open sets Ω in
a complete ambient space X and define the boundary of Ω to be its topological
boundary (which is assumed to be nonempty). In particular, if Ω is dense in X,
then our definition reduces to the usual one, with the pair (Ω, X) playing the role
of (U, Ū). The added generality of allowing X \ Ω̄ to be nonempty is irrelevant if
we only want to consider uniformity, but it is useful in our discussion as it allows
us to examine a wider class of inversions with respect to base points p ∈ X \ Ω.
Note that our invariance results are a little different depending on whether p ∈ ∂Ω
or p ∈ X \ Ω̄; see Theorems 5.1, 5.5 and Examples 5.2, 5.3, 5.4.

Let (X,d) be a complete metric space. Suppose Ω ⊂ X is a locally compact
open subspace with ∂Ω 6= ∅. Recall that δ(x) denotes the distance (in (X,d))
from a point x to the boundary of Ω. We call γ : [0,1] → Ω a c-uniform path,
c ≥ 1, provided

`(γ) ≤ cd(γ(0), γ(1)) ,

∀ t ∈ [0,1] : `
(
γ
∣∣
[0,t]

)∧ `(γ∣∣[t,1]) ≤ cδ(γ(t)).
If every pair of points in Ω can be joined by a c-uniform path, we dub Ω a c-
uniform subspace of X. The first condition on γ is called the quasiconvexity con-
dition, and the second is the double cone arc condition. Note that the existence of
uniform paths implies the existence of uniform arcs: we simply cut out any loops,
a process that preserves both the quasiconvexity and double cone conditions; see
[17].

An especially important property of uniform spaces is that quasihyperbolic
geodesics in a c-uniform space are b-uniform arcs where b = b(c) depends only
on c (e.g., we can take b = exp(1000c6)). (See [7, Theorems 1,2] for domains
in Euclidean space and [3, Theorem 2.10] for general metric spaces.) Because of
this, we may—and from now on will—assume that all quasihyperbolic geodesics
in a c-uniform space are c-uniform arcs. Quasihyperbolic geodesics in uniform
spaces constitute a special class of uniform arcs: any subarc of such an arc is also
a uniform arc with the same uniformity constant. This property is not shared by
general uniform paths.



864 STEPHEN M. BUCKLEY, DAVID A. HERRON & XIANGDONG XIE

We need to know that boundary points in a locally compact uniform space can
be joined by quasihyperbolic geodesics, and that these geodesics are still uniform
arcs. A routine application of the Arzela-Ascoli theorem establishes the existence
of quasihyperbolic geodesic rays joining an interior point to a boundary point
(however, the construction for joining two boundary points with a quasihyper-
bolic geodesic line is a tad more delicate) and this is all we require. It is easy to
verify that these limit geodesics are uniform arcs.

5.B. Main results and examples. Here we present Theorems 5.1 and 5.5
which say that inversions and sphericalizations preserve the class of uniform sub-
spaces of a complete ambient space. We provide explicit estimates for the new
uniformity constants which depend on the original uniformity constant and also
on other quantities in various cases. As in Subsection 3.D, Ω and Ip(Ω) are equal
as sets, but the former has the metric d attached, while the latter has the metric
dp. Recall that ∂Ωp = ∂Ω\{p} whenΩ is bounded, but ∂Ωp = (∂Ω\{p})∪{p′}
if Ω is unbounded.

Below we employ the following notation for Ω ⊂ Xp with ∂pΩ 6= ∅:

b(p) := sup{d(p, q) : q ∈ ∂Ω}
and

r(p) :=


d(p, ∂Ω)/d(p,Ω) if p ∈ X \ Ω̄,
0 if p ∈ ∂Ω.

We only require b(p) when Ω is bounded. If ∂Ω has at least two points, b(p) ≥
diam(∂Ω)/2; if ∂Ω = {q}, b(p) = d(p, q) > 0. Also: when p ∈ X\Ω̄, r(p) ≥ 1;
if X is a-quasiconvex, then r(p) ≤ a and so in this case c′ = c′(c, a) below in
5.1(a).

Theorem 5.1. Let (X,d) be a complete metric space and fix p ∈ X. SupposeΩ ⊂ Xp is open and locally compact with ∂Ω 6= ∅ 6= ∂pΩ. Then Ω is uniform if and
only if Ip(Ω) is uniform. More precisely:
(a) If Ω is c-uniform, then Ip(Ω) is c′-uniform, where c′ = c0[1+ r(p)]4 and c0

depends only on c. For instance, we may take c0 = 35213c6(c + 1)2.
(b) If Ip(Ω) is c-uniform and Ω unbounded, then Ω is c′′-uniform, where c′′ =

256c0 and c0 is as in (a).
(c) If Ip(Ω) is c-uniform and Ω bounded, then Ω is c′′-uniform, where c′′ =

c0 diam(Ω)/b(p), and c0 depends only on c. For instance, we may take c0 =
3 · 216c2(8c + 1)2.

See 5.7, 5.8, 5.10 for the proofs of Theorem 5.1(a,b,c) respectively. We will
see in our proof of 5.1(c) that only the quasiconvexity parameter may depend on
diam(Ω)/b(p); the double cone arc parameter depends only on c.

Before continuing, we consider some examples which show that the unifor-
mity constants c′ in the above theorem may depend not only on c, but also on the
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other indicated parameters. As noted in the introduction (for p = 0), inversion
in Rn with respect to the base point p gives the pullback metric associated with
the self-homeomorphism x , x/|x − p|2 of Rn \ {p}. We use this characteriza-
tion for the three examples below in dimension n = 2. As in Examples 4.7, 4.8,
4.9, we identify R2 with the complex number field C and use complex variables
notation.

Example 5.2. Fix 0 < t < 1, put

X = [−1,1]∪ [ti,2i] = {x : x ∈ R, |x| ≤ 1} ∪ {iy : y ∈ R, t ≤ y ≤ 2} ⊂ C,

set p = 2ti ∈ X, and let Ω = (−1,1) ⊂ X. Clearly Ω is 1-uniform. Consider
the points u = −1 + t, v = 1 − t ∈ Ω. As t → 0, we see that ip(u,v) → 2,
so lim supt→0 dp(u,v) ≤ 2. However, any path from u to v in Ω must pass
through the point 0 ∈ Ω, and so when t → 0 its dp-length will get arbitrarily
large. Thus c′ may depend on d(p, ∂Ω)/d(p,Ω) in 5.1(a). Notice that as t → 0,
d(p, ∂Ω) = √1+ 4t2 → 1 whereas d(p,Ω) = 2t → 0.

Example 5.3. Let X = T = ∂D be the unit circle in C with Euclidean dis-
tance. Fix t ∈ (0, π/2) and considerΩ = {eiθ : t < θ < 2π−t}. The uniformity
constant of Ω is very large for very small t > 0, since |z −w| is very small for the
points z = e2it and w = e−2it , but a path from z to w in Ω has length at least
2(π−2t), i.e., close to 2π . SinceΩ is an open segment on a circle through p = 1,
Ip(Ω) is isometric to an open interval, and so is a 1-uniform space irrespective of
the value of t ∈ (0,1). Thus c′′ may depend on diam(Ω)/b(p) in 5.1(c); here
diam(Ω) = 2 but b(p) = 2 sin(t/2)→ 0 as t → 0+.

Example 5.4. Fix 0 < t < π/2, set p = eit, q = e2it and let Ω = {eiθ : 2t <
θ ≤ 2π} viewed as a domain in the proper metric space

X = {eiθ : 2t ≤ θ ≤ 2π} ∪ {p} ⊂ T ⊂ C.

The sole boundary point of Ω is q. As before, Ip(Ω) is isometric to an interval,
and so is a 1-uniform space for any t ∈ (0,1). Also, any uniformity constant
c′′ for Ω must be very large for very small t > 0. Thus c′′ may depend on
diam(Ω)/d(p, q) in 5.1(c) when Ω is bounded and ∂Ω = {q}. Again diam(Ω) =
2, but d(p, q) = 2 sin(t/2) ' t as t → 0+.

We next derive a consequence of Theorem 5.1. As in Subsection 3.D, Ω and
Sp(Ω) are equal as sets, but the former has the metric d attached, while the latter
has the metric d̂p.

Theorem 5.5. Let (X,d) be an unbounded complete metric space, let Ω ⊂ X be
open and locally compact with ∂Ω 6= ∅, and let p ∈ X. Then Ω is uniform if and
only if Sp(Ω) is uniform. Moreover:
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(a) If Ω is c-uniform, then Sp(Ω) is ĉ-uniform, where ĉ = ĉ0 · (1 + 2 d(p, ∂Ω))
and ĉ0 = ĉ0(c).

(b) If Ω is unbounded and Sp(Ω) is ĉ-uniform, then Ω is c-uniform, where c =
c(ĉ).

Proof. The general result follows from Theorem 5.1 since sphericalization
is a special case of inversion (as explained at the end of Section 3.B). Let Y =
Sphp(X), let d′ = (d̂p)p̂ be the metric on Invp̂(Y ), and recall from Proposition
3.4 that the identity map (X,d) → (Invp̂(Y ), d′) = (X,d′) is 16-bilipschitz.

(a) Since (Ω, d) is c-uniform, (Ω, d′) is 256c-uniform. Select q ∈ ∂Ω with
d(p, q) ≤ 2 d(p, ∂Ω). Then diam(Y) ≤ 1, d̂p(q, p̂) ≥ 1/[4(1 + 2 d(p, ∂Ω))],
and q ∈ ∂̂pΩ. Theorem 5.1(c) applied to (Y , d̂p) now implies that Sp(Ω) is ĉ-
uniform, where ĉ = 4c0(1+ 2 d(p, ∂Ω)) and c0 is as in Theorem 5.1(c) but with
c replaced by 256c.

(b) Since p̂ ∈ ∂̂pΩ, Theorem 5.1(a) applied to (Y , d̂p) implies that (Ω, d′) is
c′-uniform with c′ = c′(ĉ). Thus (Ω, d) is 256c′-uniform. ❐

5.C. Proofs of Theorem 5.1 (a) and (b). We begin with a number of lem-
mas which are required for these promised proofs; the latter can be found in 5.7
and 5.8. In the remainder of this section we encounter various explicit constants
bi and ci, all of which are at least 1. The constants ci appear in statements of
results and are never re-used whereas the bi appear in proofs and may be defined
differently in different proofs.

First we exhibit some elementary inequalities. Suppose γ is a rectifiable path
in Xp joining x to y . Let

t = d(x,p), s = d(y,p), and R = 1
2
[`(γ)+ t + s].

Using the inequality

∀u ∈ [0, `(γ)] : [`(γ)−u+ t]∧ [u+ s] ≤ R,

we easily deduce that

(5.1) ∀z ∈ γ : d(z,p) ≤ [`(γ[x, z])+ t]∧ [`(γ[y, z])+ s] ≤ R;

when γ is c-quasiconvex, we can take R = 1
2(c + 1)(t + s).

Next, a glance back at (4.1) reveals that

(5.2) ∀ rectifiable γ ⊂ A(p; r ,R) :
`(γ)
R2 ≤ `p(γ) ≤ `(γ)

r 2 .
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Lemma 5.6. Let (X,d) be a metric space, p ∈ X, Ω ⊂ Xp be open with
∂Ω 6= ∅, and let 0 < r < R < ∞. Suppose γ is a path in A(p; r ,R)∩Ω joining x,
y . Put t = d(x,p), s = d(y,p).
(a) If γ is c-quasiconvex in X, then it is (4cst/r 2)-quasiconvex in Invp(X).
(b) If γ is c-quasiconvex in Invp(X), then it is (cR2/st)-quasiconvex in X.
(c) If γ is c-uniform in Ω, then it is c1-uniform in Ip(Ω), where c1 = 8c(R/r)2.
(d) If γ is c-uniform in Ip(Ω), then it is c2-uniform in Ω, where c2 = 2cR2/r 2.

Proof. To prove (a), we use (5.2), quasiconvexity, and (3.1) to get

`p(γ) ≤ `(γ)
r 2 ≤ cd(x,y)

r 2 ≤ 4cst
r 2 dp(x,y).

We omit the similar argument for (b) and next prove (c). Since `p(γ) ≤ 2cR/r 2,
Lemma 3.6(a) and (5.2) produce

8Rδp(z) ≥ r 2

cR

(
`p(γ)

2
∧ `p(γ[x, z])∧ `p(γ[y, z])

)

≥ r 2

cR
[`p(γ[x, z])∧ `p(γ[y, z])]

which holds for every point z on γ. For (d) we first use (b) to see that

`(γ) ≤ cR2

st
d(x,y) ≤ cR2 s + t

st
≤ 2cR2

r
,

and then Lemma 3.6(b) and (5.2) produce

2
r
δ(z) ≥ r

cR2

(
`(γ)

2
∧ `(γ[x, z])∧ `(γ[y, z])

)

≥ r
cR2 [`(γ[x, z])∧ `(γ[y, z])]

which holds for every point z on γ. ❐

5.7. Proof of Theorem 5.1 (a) Let x, y ∈ Ω, write t = d(x,p), s =
d(y,p) and assume t ≤ s. Let γ be a quasihyperbolic geodesic in Ω from x to
y ; so γ is a c-uniform arc in Ω. We demonstrate that γ is also a uniform arc in
Ip(Ω). We consider the cases s ≤ 8t and s > 8t.

Case 1. s ≤ 8t. We claim that

∀z ∈ γ :
t
b1
≤ d(z,p) ≤ 9

2
(c + 1)t,
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where b1 = 2c[1 + r(p)]. Since γ is c-quasiconvex, (5.1) provides the upper
bound. Establishing the lower bound is the only part of the proof where r(p)
enters the picture.

If `(γ[x, z]) ≤ t/2, then d(z,x) ≤ t/2 and d(z,p) ≥ d(x,p)− d(x, z) ≥
t/2. Similarly, if `(γ[z,y]) ≤ t/2, then d(z,p) ≥ t/2. Suppose `(γ[x, z]) ∧
`(γ[z,y]) ≥ t/2. If p ∈ ∂Ω, then

d(z,p) ≥ δ(z) ≥ [`(γ[x, z])∧ `(γ[z,y])]
c

≥ t
2c
,

while if p ∈ X \ Ω̄, we replace the first inequality above by the inequality

[1+ r(p)]d(z,p) ≥ d(z,p)+ r(p)d(p,Ω) = d(z,p)+ d(p, ∂Ω) ≥ δ(z).
Now Lemma 5.6(c), with r = t/b1 and R = 9(c+1)t/2, implies that γ is b2-

uniform, where b2 = 8cR2/r 2 = 2 ·34cb2
1(c+1)2 = 2334c3(c+1)2[1+r(p)]2.

Case 2. s > 8t. Let n ≥ 3 be the integer with 2nt < s ≤ 2n+1t. For each i,
1 ≤ i ≤ n, fix some xi ∈ γ with d(xi, p) = 2it. Also let x0 = x, xn+1 = y and
put γi = γ[xi−1, xi]. Note that

∀1 ≤ i ≤ n :

dp(xi−1, xi) ≤ 1
d(xi−1, p)

+ 1
d(xi, p)

= 3
2it

,

dp(xn,y) ≤ 4
2n+1t

.

We can apply Case 1 to each of the subarcs γi. In particular, since each γi
is c-quasiconvex in Ω, Lemma 5.6(a) implies that γi is (8cb2

1)-quasiconvex in
Ip(Ω). Thus

`p(γ) =
n+1∑
i=1

`p(γi) ≤ 24cb2
1

t
.

Since s > 8t, d(x,y) ≥ s−t > 7s/8, whence dp(x,y) ≥ d(x,y)/4st ≥ 7/32t
and we conclude that γ is b3-quasiconvex with b3 = 3 · 28cb2

1/7.
Note that we can argue as above to obtain

∀1 ≤ j ≤ n+ 1 : `p(γ[xj,y]) ≤ 24cb2
1

2jt
.

It remains to show that γ satisfies a double cone arc condition. We can apply
Case 1 to each of the subarcs γ[xi−2, xi+1] to see that these are b2-uniform in
Ip(Ω). Let z ∈ γ. Then z ∈ γi for some 1 ≤ i ≤ n + 1. First we consider the
‘end’ cases i ≤ 2 or i ≥ n.
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Suppose z ∈ γ1 ∪ γ2. Then

`p(γ[x3, z]) ≥ `p(γ3) ≥ 1
4
ip(x2, x3) ≥ 1

32t

so

`p(γ[y, z]) ≤ `p(γ) ≤ 24cb2
1

t
≤ 3 · 28cb2

1`p(γ[x3, z])

and thus

`p(γ[x, z])∧ `p(γ[y, z]) ≤ 3 · 28cb2
1[`p(γ[x, z])∧ `p(γ[x3, z])]

≤ 3 · 28cb2
1b2δp(z)

where the last inequality holds because γ[x0, x3] is b2-uniform in Ip(Ω).
Suppose z ∈ γn ∪ γn+1. Then

`p(γ[xn−2, z]) ≥ `p(γn−1) ≥ 1
4
ip(xn−2, xn−1) ≥ 1

2n+1t
so

`p(γ[y, z]) ≤ `p(γ[xn−1, y]) ≤ 24cb2
1

2n−1t
≤ 3 · 25cb2

1`p(γ[xn−2, z])

and thus

`p(γ[x, z])∧ `p(γ[y, z]) ≤ 3 · 25cb2
1[`p(γ[xn−2, z])∧ `p(γ[y, z])]

≤ 3 · 25cb2
1b2δp(z)

where the last inequality holds because γ[xn−2, xn+1] is b2-uniform in Ip(Ω). We
conclude that a double b4-cone inequality holds when z ∈ γ1 ∪ γ2 ∪ γn ∪ γn+1,
where b4 = 3 · 28cb2

1b2.
Now we deal with the cases 3 ≤ i < n. Put u = xi−2, v = xi+1, α = γ[u, z],

β = γ[z,v] and remember that by Case 1, γ[u,v] is b2-uniform in Ip(Ω).
Suppose `p(α) ≤ `p(β). Then

b2δp(z) ≥ `p(α) ≥ `p(γ[xi−2, xi−1]) ≥ dp(xi−2, xi−1)

≥ d(xi−2, xi−1)
4d(xi−2, p)d(xi−1, p)

≥ 1
2i+1t

,

so `p(γ[z,y]) ≤ b5δp(z), with b5 = 3 · 25cb2
1b2, and a double b5-cone arc

inequality holds. Suppose instead that `p(β) ≤ `p(α). Then

b2δp(z) ≥ `p(β) ≥ `p(γ[xi, xi+1]) ≥ dp(xi, xi+1) ≥ 1
2i+3t

,
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so `p(γ[z,y]) ≤ 4b5δp(z) and we get a double 4b5-cone arc inequality in this
case.

Since b4 = 8b5 > b2, we have a double b4-cone arc inequality in all cases.
Since b4 > b3, we have proved that γ is a c′-uniform curve in Ip(Ω), where
c′ = b4. ❐

5.8. Proof of Theorem 5.1 (b) Note that p′ ∈ ∂pΩ as Ω is unbounded.
Thus, abusing notation, we have r(p′) = 0 and—since Ip(Ω) is c-uniform—
an appeal to Theorem 5.1(a) permits us to assert that (Ω, (dp)p′) is c0-uniform.
Invoking Proposition 3.3 we conclude that (Ω, d) is 256c0-uniform. ❐

5.D. Proof of Theorem 5.1 (c). This proof is more difficult than for parts
(a) and (b). It follows from the next proposition, whose proof (see 5.14) is de-
layed until we have proven some further lemmas. Everywhere below (in Propo-
sition 5.9 and Lemmas 5.11, 5.12) we assume the following: (X,d) is a com-
plete metric space; p ∈ X; Ω ⊂ Xp is open, locally compact, and bounded with
∂Ω 6= ∅ 6= ∂pΩ; b(p) is as defined at the beginning of Subsection 5.B; kp is the
quasihyperbolic metric in Ip(Ω); and, of course, Ip(Ω) is c-uniform.

Proposition 5.9. Let γ be a kp-geodesic joining x, y ∈ Ω with t = d(x,p) ≤
d(y,p). Then γ is a b-uniform arc in Ω. If d(x,y) ≤ t/8c, we can take b = c3 =
8c(8c + 1)2; if d(x,y) ≥ t/8c, then

`(γ) ≤ c4ρd(x,y) ,

∀z ∈ γ : `(γ[x, z])∧ `(γ[z,y]) ≤ c5δ(z),

where c4 = 3 · 214c3, ρ = diam(Ω)/b(p), c5 = 3 · 216c2(8c + 1)2 and so b =
(c4ρ)∨ c5 works.

5.10. Proof of 5.1 (c). According to Proposition 5.9, the kp-geodesics are
b-uniform arcs in Ω, where b = (c4ρ)∨ c5 ≤ c′′. ❐

Lemma 5.11. Suppose γ is a kp-geodesic between x, y ∈ Ω, with d(x,p) ≤
d(y,p). Then:
(a) For all z ∈ γ, d(z,p) ≥ d(x,p)/(8c + 1).
(b) If there exists a number K ≥ 1 such that d(z,p) ≤ Kd(x,p) for all z ∈ γ, then

γ is K2c-quasiconvex and c6-uniform in Ω, where c6 = 2K2c(8c + 1)2.

Proof. Let t = d(x,p) and s = d(y,p). We first prove (a). Using (3.1)
twice, plus the fact that γ is c-quasiconvex in Ip(Ω), we get

d(x, z)
4td(z,p)

≤ dp(x, z) ≤ `p(γ) ≤ cdp(x,y) ≤ 2c
t
,

and so d(x, z) ≤ 8cd(z,p). Thus t ≤ d(x, z)+ d(z,p) ≤ (8c + 1)d(z,p).
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As for (b), the hypotheses and part (a) imply that γ ⊂ A(p; r ,R), where
r = t/(8c + 1) and R = Kt. The desired quasiconvexity and uniformity of γ are
thus given by Lemma 5.6(b,d), since cR2/st ≤ K2c and 2cR2/r 2 = c6. ❐

Lemma 5.12. Suppose γ is a kp-geodesic between x, y ∈ Ω, where d(x,p) ≤
d(y,p)/8 and d(y,p) ≥ d(z,p) for all z ∈ γ. Then γ is c7-quasiconvex and
c8-uniform in Ω, where c7 = 3 · 25c and c8 = 5 · 212c2(8c + 1)2.

Proof. Let t = d(x,p) and choose the integer n ≥ 2 with 2nt < d(y,p) ≤
2n+1t. For 1 ≤ i ≤ n, let xi be the first point on γ (oriented from x to y)
with d(xi, p) = 2it. Also set x0 := x, xn+1 := y . Set γi := γ[xi−1, xi],
1 ≤ i ≤ n + 1. By the choice of xi, we have d(z,p) ≤ 2it for all z ∈ γi.
Applying Lemma 5.11(b) to each γi (with (2i−1t,2) taking the place of (t,K)),
we see that

`(γi) ≤ 8cd(xi−1, xi) ≤ 3 · 22+ict,

and so `(γ) = ∑n+1
i=1 `(γi) ≤ 3 · 24+nct. On the other hand,

d(x,y) ≥ d(y,p)− d(p,x) ≥ 2nt − t ≥ 2n−1t.

Consequently, `(γ) ≤ 3 · 25cd(x,y).
It remains to show that γ satisfies a double cone arc condition. Let z ∈ γ, so

z ∈ γi for some i. We consider three cases.

Case 1. i = 1.
Now z ∈ γ[x,x1]. As above,

`(γ[x, z]) ≤ `(γ[x,x1]) ≤ 8cd(x,x1) ≤ 24ct,

while `(γ[z,x2]) ≥ `(γ[x1, x2]) ≥ d(x1, x2) ≥ 2t. Thus `(γ[z,x2]) ≥
`(γ[x, z])/12c. Now Lemma 5.11(b) with K = 4 applied to γ[x,x2] yields

δ(z) ≥ `(γ[x, z])∧ `(γ[z,x2])
25c(8c + 1)2 ≥ 2`(γ[x, z])

3 · 27c2(8c + 1)2 .

Case 2. 2 ≤ i < n.
Lemma 5.11(b) withK = 8 applied to γ[xi−2, xi+1] gives b1δ(z) ≥ `(γ[xi−2, z])∧

`(γ[z,xi+1]), where b1 = 27c(8c + 1)2. Note that

`(γ[xi−2, z]) ≥ `(γ[xi−2, xi−1]) ≥ d(xi−2, xi−1) ≥ 2i−2t,

and similarly `(γ[z,xi+1]) ≥ 2it. On the other hand,

`(γ[x, z]) ≤ `(γ[x,xi]) =
i∑
j=1

`(γj) ≤
i∑
j=1

3 · 22+jct ≤ 3 · 23+ict.
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It follows that b2δ(z) ≥ `(γ[x, z]), where b2 = 3 · 25cb1 = 3 · 212c2(8c + 1)2.

Case 3. i ∈ {n,n+ 1}.
Recall that d(z,p) ≤ d(y,p) for all z ∈ γ and so d(z,p) ≤ 4d(xn−1, p).

Thus Lemma 5.11(b) with K = 4 applied to γ[xn−1, y] gives

`(γ[z,y]) ≤ `(γ[xn−1, y]) ≤ 24cd(xn−1, y) ≤ 5 · 24+n−1ct.

Since also `(γ[xn−2, z]) ≥ `(γ[xn−2, xn−1]) ≥ 2n−2t, it follows that

`(γ[xn−2, z]) ≥ `(γ[z,y])
5 · 25c

.

Applying Lemma 5.11(b) with K = 8 to γ[xn−2, y], we get

δ(z) ≥ [`(γ[xn−2, z])∧ `(γ[z,y])]
b1

≥ `(γ[z,y])
5 · 25cb1

= `(γ[z,y])
c8

. ❐

Remark 5.13. The above shows that for i ≤ n−1 and all z ∈ γi, `(γ[x, z]) ≤
b2δ(z); we use this fact in the following proof.

5.14. Proof of Proposition 5.9. First, suppose d(x,y) ≤ t/8c. By Lemma
5.11(b), it suffices to show that d(z,p) ≤ 2t for z ∈ γ. Since d(x,y) ≤ t/8c
and d(y,p) ≥ t, we see that dp(x,y) ≤ d(x,y)/d(x,p)d(y,p) ≤ 1/8ct. If
z ∈ γ, then (3.1) and the uniformity of γ in Ip(Ω) imply that

d(x, z)
4td(z,p)

≤ dp(z,x) ≤ `p(γ) ≤ cdp(x,y) ≤ 1
8t
,

and so d(x, z) ≤ d(z,p)/2. Now d(x,p) ≥ d(z,p) − d(x, z) ≥ d(z,p)/2, as
required.

Next, assume d(x,y) ≥ t/8c. Set s = d(y,p) and pick z0 ∈ γ such that
d(z0, p) ≥ d(z,p) for all z ∈ γ. Set a = d(z0, p). We claim that a ≤ 8csρ.
Certainly this is true if a < 2s, so suppose a ≥ 2s ≥ 2t. It follows from the
triangle inequality that d(z0, x), d(z0, y) ∈ [a/2,2a] and so

`p(γ[z0, x]) ≥ dp(z0, x) ≥ d(z0, x)
4d(z0, p)d(x,p)

≥ 1
8t
.

Similarly, `p(γ[z0, y]) ≥ 1/8s, and so the uniformity of γ in Ip(Ω) gives

(8cs)−1 = [8c(s ∨ t)]−1 ≤ [`p(γ[z0, x])∧ `p(γ[z0, y])]
c

≤ δp(z0).

On the other hand, for any q ∈ ∂pΩ we have

δp(z0) ≤ dp(z0, q) ≤ d(z0, q)
d(z0, p)d(q,p)

≤ diam(Ω)
a · d(p, q) =

diam(Ω)
ad(p, q)

,
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and the claim follows by comparing these two estimates for δp(z0).
Depending on whether the ratios a/s and a/t are less than or exceed 8, we ap-

ply either Lemma 5.11(b) (with K = 8) or Lemma 5.12 to γ[x, z0] and γ[z0, y]
and obtain:

`(γ[x, z0]) ≤ 3 · 25cd(x, z0) ≤ 3 · 26ca,

`(γ[y, z0]) ≤ 3 · 25cd(y, z0) ≤ 3 · 26ca.

It follows that `(γ) ≤ 3 · 27ca ≤ 3 · 210c2sρ. If s ≥ 2t, then s/2 ≤ d(x,y) and
so

`(γ) ≤ 3 · 211c2ρd(x,y).

If instead s ≤ 2t, then the assumption d(x,y) ≥ t/8c implies that

`(γ) ≤ 3 · 211c2tρ ≤ 3 · 214c3ρd(x,y) = c4ρd(x,y).

It remains to show that γ satisfies a double cone arc condition. Let m, n be
the integers such that 2mt < a ≤ 2m+1t, 2ns < a ≤ 2n+1s. Let xi, 1 ≤ i ≤m,
be the first point on γ[x, z0] (oriented from x to z0) with d(xi, p) = 2it and
yi, 1 ≤ i ≤ n, be the first point on γ[y, z0] (oriented from y to z0) with
d(yi, p) = 2is. Let b1, b2 be as in the proof of Lemma 5.12.

Applying Remark 5.13 to γ[x, z] and γ[z,y], we get that

b2δ(z) ≥ `(γ[x, z])

for z ∈ γ[x,xm−1] whenever m ≥ 3, and

b2δ(z) ≥ `(γ[z,y])

for z ∈ γ[yn−1, y] whenever n ≥ 3, giving the required double cone arc inequal-
ity for all such points.

Eliminate such points from consideration. Set x′ = xm−2, x′′ = xm−1 if
m ≥ 3 and x′ = x′′ = x if m ≤ 2. Similarly y ′ = yn−2, y ′′ = yn−1 if n ≥ 3
and y ′ = y ′′ = y if n ≤ 2. We need to get a double cone arc inequality for points
z ∈ γ[x′′, y ′′]. Applying Lemma 5.11(b) with K = 8 to γ[x′, y ′], we get

b1δ(z) ≥ `(γ[z,x′])∧ `(γ[z,y ′]).

Assume that `(γ[z,x′]) ≤ `(γ[z,y ′]) and so b1δ(z) ≥ `(γ[z,x′]); the case
`(γ[z,x′]) ≥ `(γ[z,y ′]) can be handled similarly. If m ≤ 2, then x′ = x and
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we are done. Suppose instead that m ≥ 3. Then

`(γ[z,x′]) = `(γ[z,xm−2]) ≥ `(γ[xm−1, xm−2])

≥ d(xm−1, xm−2) ≥ 2m−2t.

On the other hand,

`(γ[x, z])∧ `(γ[z,y]) ≤ `(γ)
2

≤ 3 · 26ca ≤ 3 · 2m+7ct.

It follows that

δ(z) ≥ `(γ[z,x′])
b1

≥ [`(γ[x, z])∧ `(γ[z,y])]
3 · 29cb1

= [`(γ[x, z])∧ `(γ[z,y])]
c5

. ❐

6. INVERSIONS AND QUASICONVEXITY

Here we introduce the notion of annular quasiconvexity and demonstrate that a
metric space is quasiconvex and annular quasiconvex if and only if its inversions
are quasiconvex and annular quasiconvex. These results then produce improved
quantitative estimates for the uniformity constants arising in Theorems 5.1 and
5.5.

6.A. Annular quasiconvexity. Given c ≥ 1, we call a metric space X c-
annular quasiconvex at p ∈ X provided for all r > 0, points in A(p; r ,2r) can
be joined by c-quasiconvex paths lying in A(p; r/c,2cr). We call X c-annular
quasiconvex if it is c-annular quasiconvex at each point. Examples of quasiconvex
and annular quasiconvex metric spaces include Banach spaces and upper regular
Loewner spaces; the latter includes Carnot groups and certain Riemannian man-
ifolds with non-negative Ricci curvature; see [9, 3.13, 3.18, Section 6]. Korte
[12] has recently verified that doubling metric measure spaces which support a
(1, p)-Poincaré inequality with sufficiently small p are annular quasiconvex.

Here is a ‘bootstrapping’ technique which we find useful.

Lemma 6.1. Let (X,d) be c-quasiconvex and c-annular quasiconvex at p ∈ X.
Fix 0 < 2r ≤ R. Points in A(p; r ,R) can be joined by 5c-quasiconvex paths which
stay in A(p; r/c, cR).

Proof. Let x, y ∈ A(p; r ,R). Put d(x,p) = r , d(y,p) = R and suppose
R > 4r . Pick any c-quasiconvex path η joining x, y . Let η̃ be a component of η∩
A(p; 2r ,R/2) with endpoints u, v satisfying d(u,x) = 2r and d(v,x) = R/2.
Use annular quasiconvexity to choose c-quasiconvex paths α and β joining x, u
in A(p; r/c,2cr) and y , v in A(x;R/2c, cR), respectively. The concatenation



Metric Space Inversions, Quasihyperbolic Distance, Uniform Spaces 875

γ of the three paths α, η̃, β has the required properties. In fact, d(x,y) ≥
(3R/4)∨ (3r), and therefore

`(γ) = `(α)+ `(η̃)+ `(β) ≤ c
(

3r + d(x,y)+ 3R
2

)
≤ 4cd(x,y).

If instead r ≤ R/2 ≤ 2r , we argue as above but replace η̃ by {z} for any point
z satisfying d(z,p) = R/2, and then d(x,y) ≥ (R/2) ∨ r , so the concatenated
path γ satisfies

`(γ) ≤ `(α)+ `(β) ≤ c
(
r + R

2

)
+ c

(
3R
2

)
≤ 5cd(x,y). ❐

According to Proposition 4.2, local quasiconvexity is preserved under both inver-
sion and sphericalization. It is easy to see that global quasiconvexity does not share
this property. Indeed, Invp(X) may fail to be quasiconvex even when (X,d) is a
bounded length space.

Example 6.2. Let X be the subset of C given as

X = [0,1]∪
∞⋃
n=1
[an,an + ibn]

where 1 ≥ a1 > a2 > · · · > an → 0 and 0 < bn ≤ 1. We equip X with its
Euclidean length distance which we denote by d. Then (X,d) is a length space of
diameter at most 3. Let p = 0 and cn = an + ibn. Choosing an = 1/2n2 and
bn = 1/n we find that

dp(cn, cn+1) ≤ ip(cn, cn+1) = bn + an − an+1 + bn+1

(an + bn)(an+1 + bn+1)
≤ 3(n+ 1).

On the other hand, dp(cn,an) ≥ ip(cn,an)/4 ≥ n2/16. Since any path from
cn to cn+1 must pass through an, lp(cn, cn+1) ≥ n2/16. Thus dp and lp are not
bilipschitz equivalent.

Proposition 6.3. Suppose X is connected and c-annular quasiconvex at some
point p ∈ X. Then X is 9c-quasiconvex and Invp(X) is 72c3-quasiconvex.

Proof. We establish the latter assertion and leave the former for the interested
reader. Let x, y ∈ Xp, t = d(x,p), s = d(y,p) and assume t ≤ s. Suppose
s ≤ 2t. Then y ∈ A(p; t,2t), so there is a c-quasiconvex γ joining x, y in
A(p; t/c,2ct). According to Lemma 5.6(a), γ is 8c3-quasiconvex in Invp(X).

Suppose instead that s > 2t. Let n ≥ 2 be the integer with 2n−1t <
d(y,p) ≤ 2nt. Put x0 = x, xn = y and for 1 ≤ i < n select points xi with
d(xi, p) = 2it. For 0 ≤ i < n, annular quasiconvexity provides c-quasiconvex
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paths γi ⊂ A(p; 2it/c, c2i+1t) joining xi to xi+1. Note that d(xi, xi+1) ≤
3 · 2it and thus `p(γi) ≤ 3c3/(2it) by (5.2). Letting γ be the concatenation of
γ0, . . . , γn−1 we have

`p(γ) =
n−1∑
i=0

`p(γi) ≤ 3c3

t

n−1∑
i=0

2−i = 3c3

t
[2− 21−n].

On the other hand,

dp(x,y) ≥ d(x,y)
4d(x,p)d(y,p)

≥ s − t
4ts

≥ (2n−1 − 1)t
4 · 2nt2 = 1

8t
[1− 21−n].

It now follows that `p(γ) ≤ 72c3dp(x,y).
The case x ∈ Xp and y = p′ (and X unbounded) is handled in the same

manner as the s > 2t case, except that the lower bound for dp(x,y) is now
dp(x,p′) ≥ 1/4t. ❐

6.B. Invariance of quasiconvexity. Here are our main invariance results for
quasiconvexity. In each of 6.4(a,b) and 6.5(a,b), c1 = 72c3 and c2 = 3912c5.

Theorem 6.4. Let (X,d) be a metric space and p ∈ X.
(a) If (X,d) is c-quasiconvex and c-annular quasiconvex, then (Invp(X),dp) is

c1-quasiconvex and c2-annular quasiconvex;
(b) If p is a non-isolated point in (X,d) and (Invp(X),dp) is c-quasiconvex and

c-annular quasiconvex, then (X,d) is 162c1-quasiconvex and 162c2-annular
quasiconvex.

Theorem 6.5. Let (X,d) be an unbounded metric space and p ∈ X.

(a) If (X,d) is c-quasiconvex and c-annular quasiconvex, then (Sphp(X), d̂p) is
c1-quasiconvex and c2-annular quasiconvex.

(b) If (Sphp(X), d̂p) is c-quasiconvex and c-annular quasiconvex, then (X,d) is
28c1-quasiconvex and 28c2-annular quasiconvex.

We break the proofs into a number of pieces as indicated below. Establishing
6.4(a) turns out to be the crucial step; then we appeal to results from Subsec-
tion 3.C.

Proof of Theorem 6.4(a). We assume X is both c-quasiconvex and c-annular
quasiconvex.

Thanks to Proposition 6.3 we already know that Invp(X) is c1-quasiconvex,
so it remains to demonstrate the annular quasiconvexity. Let x ∈ Xp, r > 0, and
set t = d(x,p). Note that rt ≤ d(x,y)/d(y,p) ≤ 8rt for y ∈ Ap(x; r ,2r).
We consider three cases.
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Case 1. rt ≤ 1/80c.
We first claim that

Ap(x; r ,2r) ⊂ A
(
x;

10rt2

11
,

80rt2

9

)
.

To see this, let y ∈ Ap(x; r ,2r). Combining the inequality |d(y,p) − t| ≤
d(x,y) with the estimate

d(x,y)
d(y,p)

≤ 1
10c

≤ 1
10
,

we see that 10t/11 ≤ d(y,p) ≤ 10t/9, and so 10rt2/11 ≤ d(x,y) ≤ 80rt2/9,
as claimed.

Let y1, y2 ∈ Ap(x; r ,2r). By our claim and Lemma 6.1, there is a path γ
from y1 to y2 with `(γ) ≤ 5cd(y1, y2) and γ ⊂ A(x; 10rt2/11c,80crt2/9).
We show that γ also satisfies annular quasiconvexity conditions with respect to
dp.

Since rt ≤ 1/80c, we have d(x, z) ≤ 80crt2/9 ≤ t/9, for all z ∈ γ. By the
triangle inequality, 8t/9 ≤ d(p, z) ≤ 10t/9 for all z ∈ γ, and so

`p(γ) ≤ `(γ)
(8t/9)2 ≤

81 · 5cd(y1, y2)
64t2 .

On the other hand,

dp(y1, y2) ≥ d(y1, y2)
4d(y1, p)d(y2, p)

≥ d(y1, y2)
4(10t/9)2 .

It follows that `p(γ) ≤ 125cdp(y1, y2)/4.
It remains to prove that γ is contained in a dp-annulus. Let z ∈ γ. An

upper bound on dp(z,x) is easy to determine: since y1, y2 ∈ Ap(x; r ,2r) and
`p(γ) ≤ 125cdp(y1, y2)/4 ≤ 125cr , the triangle inequality gives dp(z,x) ≤
2r + `p(γ)/2 ≤ 129cr/2. As for a lower bound,

dp(z,x) ≥ d(z,x)
4d(z,p)d(x,p)

≥ d(z,x)
4(10t2/9)

= 9
40t2d(z,x) ≥

9
40t2 ·

10rt2

11c
= 9r

44c
.

Case 2. rt > 10c.
We first claim that Ap(x; r ,2r) ⊂ A(p; 5/44r ,10/9r). To see this, let

y ∈ Ap(x; r ,2r). Combining the inequality |d(x,y) − t| ≤ d(y,p) with the
estimate d(x,y)/d(y,p) > 10c ≥ 10, we see that 10t/11 ≤ d(x,y) ≤ 10t/9.
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Since rt ≤ d(x,y)/d(y,p) ≤ 8rt, we have d(y,p) ≤ d(x,y)/rt ≤ 10/9r
and d(y,p) ≥ d(x,y)/8rt ≥ 5/44r .

Let y1, y2 ∈ Ap(x; r ,2r). By our claim and Lemma 6.1, there is a path γ
from y1 to y2 with `(γ) ≤ 5cd(y1, y2) and γ ⊂ A(p; 5/44cr ,10c/9r). We
show that γ also satisfies annular quasiconvexity conditions with respect to dp.

We have

`p(γ) ≤
(

5
44cr

)−2

`(γ) ≤
(

44cr
5

)2

5cd(y1, y2).

On the other hand,

dp(y1, y2) ≥ d(y1, y2)
4d(y1, p)d(y2, p)

≥ d(y1, y2)
4(10c/9r)2 =

81r 2d(y1, y2)
2452c2 .

It follows that `p(γ) ≤ 1936c5dp(y1, y2).
It remains to prove that γ is contained in a dp-annulus. Let z ∈ γ. As in Case

1, an upper bound on dp(z,x) is easy: we get that dp(z,x) ≤ 2r + 1936c5 ·
2r < c2r . As for the lower bound, since z ∈ γ ⊂ A(p; 5/44cr ,10c/9r), we
have a fortiori d(z,p) ≤ 2c/r . But by assumption d(x,p) > 10c/r , and so
d(x, z) ≥ d(x,p)/2. Thus

dp(z,x) ≥ d(z,x)
4d(z,p)d(x,p)

≥ d(x,p)/2
8c d(x,p)/r

= r
16c

.

Case 3. 1/80c ≤ rt ≤ 10c.
Let y1, y2 ∈ Ap(x; r ,2r). By quasiconvexity, there is a path γ from y1 to

y2 with `p(γ) ≤ c1dp(y1, y2). Set r ′ = r/800c2. If γ ∩ Bp(x, r ′) = ∅, then
we are done, so assume γ ∩ Bp(x, r ′) 6= ∅. Let z1, z2 be the first and last points
on γ with dp(x, zi) = r ′. By our assumption, we have r ′t ≤ 1/80c. By Case
1, there is a path γ′ from z1 to z2 such that `p(γ′) ≤ 125cdp(z1, z2)/4 and
γ′ ⊂ Ap(x; 9r ′/44c,129cr ′/2). We now have

4`p(γ′)
125c

≤ dp(z1, z2) ≤ `p(γ[z1, z2]) ≤ `p(γ) ≤ c1dp(y1, y2).

Replace the part γ[z1, z2] of γ by γ′ to obtain a new path γ′′ from y1 to y2.
Note that γ′′ is disjoint from Bp(x,9r ′/44c) ⊃ Bp(x, r/3912c3) and that

`p(γ′′) ≤ c1

(
1+ 125c

4

)
dp(y1, y2) ≤ 2322c4dp(y1, y2).

It follows that γ′′ ⊂ Ap(x; r/3912c3,4646c4r).
It remains to consider the case when X is unbounded and x = p′. Let r > 0.

From the definition of dp(y,p′), we see that Ap(p′; r ,2r) ⊂ A(p; 1/8r ,1/r).
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Let y1, y2 ∈ Ap(p′; r ,2r). Then there is a path γ from y1 to y2 with `(γ) ≤
5cd(y1, y2) and γ ⊂ A(p; 1/8cr , c/r), so

`p(γ) ≤ `(γ)
(1/8cr)2 ≤ (8cr)25cd(y1, y2) = 320c3r 2d(y1, y2)

and

dp(y1, y2) ≥ d(y1, y2)
4d(y1, p)d(y2, p)

≥ d(y1, y2)
4(1/r)2 = r 2d(y1, y2)

4
.

It follows that `p(γ) ≤ 1280c3dp(y1, y2). Let z ∈ γ. Then dp(z,p′) ≤
2562c3r , and dp(z,p′) ≥ 1/4d(p, z) ≥ r/4c, as required. ❐

Proof of Theorem 6.5(a). We proceed as in the proof of Theorem 6.4(a). ❐

Proof of Theorem 6.4(b). Assume p ∈ X is non-isolated and (Invp(X),dp)
is c-quasiconvex and c-annular quasiconvex. First, suppose X is unbounded. As
in Proposition 3.3, letting d′ = (dp)p′ denote the distance on Invp′(Invp X) we
have (X,d) 16-bilipschitz equivalent to (X,d′). Appealing to Theorem 6.4(a) we
find that (X,d′) is c1-quasiconvex and c2-annular quasiconvex, so our asserted
conclusion follows.

Next, suppose X is bounded. Let r = diam(X) and fix a point q ∈ X with
d(p, q) ≥ r/2. Since both quasiconvexity and annular quasiconvexity are pre-
served by dilations (with no change in the associated constants), we can rescale
our distance and we find that

(Invp(X), (d/r)p) = (Invp(X), r dp)

is both c-quasiconvex and c-annular quasiconvex. Set (Y , e) = (Invp(X), (d/r)p).
By Theorem 6.5(a), (Sphq(Y), êq) is c1-quasiconvex and c2-annular quasicon-
vex. Proposition 3.5 tells us that (X,d/r) and (Sphq(Y), êq) are 256-bilipschitz
equivalent. It now follows that (X,d/r) is 216c1-quasiconvex and 216c2-annular
quasiconvex, so (X,d) is also. ❐

Proof of Theorem 6.5(b). Here we proceed as in the unbounded case of the
proof of Theorem 6.4(b), only now we employ Proposition 3.4. ❐

6.C. Connection with uniformity. As an application of our results in Sub-
section 6.B, we prove Theorems 6.7 and 6.8 below which, in contrast with Theo-
rems 5.1 and 5.5, provide better parameter dependence when our ambient space
is quasiconvex and annular quasiconvex.

First we point out that uniformity does not imply annular quasiconvexity;
e.g., (−1,1) is a uniform subspace of R, but it is not annular quasiconvex at the
origin. On the other hand, it is not hard to see that if ζ is a non-isolated point of
some Ω ⊂ X and Ω\{ζ} is b-uniform, then Ω is both b-uniform and 2b-annular



880 STEPHEN M. BUCKLEY, DAVID A. HERRON & XIANGDONG XIE

quasiconvex at ζ. (The uniformity of Ω follows from the fact that ζ ∈ ∂(Ω\{ζ})
and we can always join any two points in the closure of a uniform space with a
uniform arc as explained at the end of Subsection 5.A).

Here is a sort of converse to these remarks.

Theorem 6.6. Let X be a complete metric space. Suppose Ω ⊂ X is a locally
compact b-uniform subspace (so open with ∂Ω 6= ∅). Let ζ ∈ Ω and put Ω′ =Ω\{ζ}. IfX is c-annular quasiconvex at ζ, thenΩ′ is b′-uniform with b′ = (5bc)2.

Proof. Put a = 5bc. For z ∈ Ω′, write δ′(z) = d(z, ∂Ω′) = δ(z)∧d(z,ζ).
Fix x, y ∈ Ω′. Assume t = d(x,ζ) ≤ d(y,ζ). Let γ be a quasihyperbolic
geodesic in Ω from x to y . Then γ is a b-uniform arc in Ω (as are all its sub-
arcs). In particular, γ is b-quasiconvex, so if γ satisfies an appropriate double cone
condition in Ω′, we are done. Therefore we may assume there is some z ∈ γ with

2abδ′(z) ≤ `(γ[x, z])∧ `(γ[y, z]) ≤ bd(x, z).

Since γ is a double b-cone in Ω, we must have

d(z,ζ) = δ′(z) ≤ d(z,x)
2a

;

so (2a− 1)d(z, ζ) ≤ t, which implies d(z,ζ) < t/a.
In particular, we may assume γ ∩ B(ζ; t/a) 6= ∅. Now let x′ and y ′ be

the first and last points respectively on γ with d(x′, ζ) = d(y ′, ζ) = t/a. Put
γx = γ[x,x′] and γy = γ[y,y ′]. Since X is c-annular quasiconvex at ζ,
there is a c-quasiconvex path α ⊂ A(ζ; t/ac,2ct/a) joining x′ and y ′. Set
β = γx ∪α∪ γy . We verify that β is a b′-uniform curve in Ω′.

Notice that `(α) ≤ cd(x′, y ′) ≤ 2ct/a and also `(α) ≤ c`(γ[x′, y ′]). It
follows that

`(β) = `(γx)+ `(α)+ `(γy) ≤ c`(γ) ≤ bcd(x,y),

so in fact β is bc-quasiconvex. Note that similar reasoning provides the estimates

(6.1) ∀z ∈ γx∪γy : `(β[x, z])∧`(β[y, z]) ≤ c[`(γ[x, z])∧`(γ[y, z])].

It remains to prove the double cone arc condition. We first consider points
z ∈ α; so t/ac ≤ d(z,ζ) ≤ 2ct/a. Now

d(x′, z) ≤ `(α) ≤ 2ct
a

and bδ(x′) ≥ `(γx)∧ `(γy) ≥ t − t
a
,

so

δ(z) ≥ δ(x′)− d(x′, z) ≥ [(a− 1)− 2bc]
(
t
ab

)
≥ 2ct

a
≥ d(z,ζ);
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here the penultimate inequality holds by our choice of a. It follows that δ′(z) =
d(z,ζ) ≥ t/ac and thus

`(β[x, z])∧ `(β[y, z]) ≤ `(α)+ `(γx) ≤ [2c + b(a+ 1)]
(
t
a

)
≤ b′δ′(z)

as desired.
Now suppose z ∈ γx ∪ γy . Then d(z,ζ) ≥ t/a by our choice of x′ and y ′.

We claim that
`(β[x, z])∧ `(β[y, z]) ≤ a2δ′(z).

Suppose this were false. Then, using (6.1) in conjunction with γ being a double
b-cone arc in Ω, we would obtain a2δ′(z) < bcδ(z) which in turn would imply
that

d(z,ζ) = δ′(z) ≤ c
a2 [`(γ[x, z])∧ `(γ[y, z])]

≤ c
a2 `(γ[x, z]) ≤

bc
a2 d(z,x) <

d(z,x)
2a

;

but as in the beginning of the proof, this would give the contradiction d(z,ζ) <
t/a. ❐

Finally, here are our improved versions of Theorems 5.1 and 5.5.

Theorem 6.7. Let X be a complete c-quasiconvex c-annular quasiconvex metric
space and fix p ∈ X. Suppose Ω ⊂ Xp is open and locally compact with ∂Ω 6= ∅ 6=
∂pΩ. Then Ω is uniform if and only if Ip(Ω) is uniform. The uniformity constants
depend only on each other and c.

Proof. Since r(p) ≤ c, most of this follows already from Theorem 5.1(a,b).
It suffices to consider the case when Ω is bounded and Ip(Ω) is b-uniform. Fix
any point q ∈ ∂Ω and pick ζ ∈ Ω with d(q,ζ) > diam(Ω)/3. Set Ω′ = Ω \ {ζ}.
Then ∂Ω′ = ∂Ω∪ {ζ} and diam(∂Ω′) > diam(Ω)/3.

According to Theorem 6.4(a), Invp(X) is c1-quasiconvex and c2-annular qua-
siconvex. Since Ip(Ω) is b-uniform, Theorem 6.6 says that Ip(Ω′) = Ip(Ω) \ {ζ}
is b′-uniform with b′ = b′(b, c) = (5bc2)2. Theorem 5.1(c) asserts thatΩ′ is b′′-
uniform, which then implies thatΩ is b′′-uniform. Here b′′ = c0 diam(Ω′)/b(p)
and c0 = c0(b′) = c0(b, c). Recalling that b(p) ≥ diam(∂Ω′)/2 ≥ diam(Ω)/6,
we find that b′′ ≤ 6c0. ❐

Theorem 6.8. Let X be an unbounded complete c-quasiconvex c-annular qua-
siconvex metric space and fix p ∈ X. Suppose Ω ⊂ X is open and locally compact
with ∂Ω 6= ∅. Then Ω is uniform if and only if Sp(Ω) is uniform. The uniformity
constants depend only on each other and c.
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Proof. In view of Theorem 5.5(b), we only need to show that Sp(Ω) uniform
implies Ω is too. As in the proof of Theorem 5.5(a), we use Proposition 3.4 which
says that the identity map (X,d) → (Invp̂(Y ), d′) = (X,d′) is 16-bilipschitz,
where Y = Sphp(X) and d′ = (d̂p)p̂. The result now follows from Theo-
rem 6.7. ❐

7. GENERALIZED INVERSION

In [1, Section 3] Balogh and the first author investigated the notion of flattening
wherein a closed subset of the metric boundary of a suitable incomplete bounded
metric space is sent to infinity in a manner similar to the way Invp sends a point
p to infinity. Let X be complete, p ∈ X, and suppose Xp is such a space. If we
flatten Xp using the standard flattening function t , t−2, then—recalling (4.1)—
we obtain the length distance lp associated with dp. Thus the standard flattened
metric on Xp is bilipschitz equivalent to dp precisely when Invp(X) is quasiconvex
(which, according to Proposition 6.3, is true whenever X is annular quasiconvex).

The notion of flattening allows for more general flattening functions. Inspired
by this, we consider generalized inversion defined for points x, y ∈ Xp by

ip,f (x,y) := [d(x,y)∧ d(x,p)∧ d(y,p)] · f(d(x,p)∧ d(y,p)) ,

dp,f (x,y) := inf
{ k∑
i=1

ip,f (xi, xi−1) : x = x0, . . . , xk = y ∈ Xp
}

;

here I
f
----------------------------------------→ (0,∞) is a continuous function satisfying

(I-0) f(r) ≤ Cf(s) when 1
2 ≤ r/s ≤ 2 and r , s ∈ I,

and the function F(t) := tf (t) satisfies
(I-1) F(s) ≤ CF(r) when r ≤ s and r , s ∈ I,
(I-2) F(r)→∞ as r → 0, and
(I-3) when X is unbounded, F(r)→ 0 as r →∞.
In the above, C > 2 is a constant and either I = (0,∞) if X is unbounded or
I = (0,diamX]. We call any f which satisfies (I-0)–(I-3) a C-admissable inversion
function.

We will see that for all points x, y ∈ Xp,

(7.1) C−2ip,f (x,y) ≤ dp,f (x,y) ≤ ip,f (x,y) ≤ F(d(x,p))∨ F(d(y,p))

and so dp,f is a distance function which can be extended in the usual way to X̂p.
Thus we obtain a metric space (Invp,f (X),dp,f ) (and when X is unbounded we
include a point p′ in Invp,f (X) which corresponds to the point at infinity). Before
proceeding, we discuss this definition. First, it is reasonable to call this process
generalized inversion because ip,f is comparable to ip in the case of the standard
(4-admissable) inversion function t , t−2. To see this, suppose x, y ∈ Xp, with
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d(x,p) ≤ d(y,p). If d(x,y) ≤ 2d(x,p), then d(y,p) ≤ d(y,x)+d(x,p) ≤
3d(x,p), and so

ip(x,y) = d(x,y)
d(x,p)d(y,p)

≤ d(x,y)
d(x,p)2 ≤ 2ip,f (x,y) ≤ 6ip(x,y).

On the other hand, if d(x,y) > 2d(x,p), then |d(y,p)−d(y,x)| ≤ d(x,p) <
d(x,y)/2, so 2

3 < d(x,y)/d(y,p) < 2 and therefore

1
2
ip(x,y) <

1
d(x,p)

= ip,f (x,y) < 3
2
ip(x,y).

Next, our definition of admissable inversion functions is quite natural. In
particular, (I-1) ensures that inversion dilates distances close to p more than those
far from p, (I-2) ensures that distances blow up near p, and (I-3) ensures that all
sequences in X that tend to ∞ in X̂ tend to a unique point p′ in the completion

of (Xp,dp,f ). Also, assuming (I-1), (I-0) is equivalent to the fact that
∫ 2r

r
f (t)dt

is comparable to F(r). To see why this is needed, let us perform our generalized
inversion on the Euclidean half-line [0,∞)with p = 0. We find that ip,f (r ,2r) =
rf(r) = F(r) and dp,f (r ,2r) ≤

∫ 2r

r
f (t)dt. If the latter were much smaller

than F(r), we would lose the basic property of our inversion theory that says ip,f
should be comparable with dp,f .

We note that all flattening functions are admissable inversion functions; this
follows easily from [1, Lemma 3.3]. Admissable inversion functions form a strictly
larger class than flattening functions since they may decay at a slower rate: for
instance, f(t) = t−1[log(1 + 1/t)]α is an admissable inversion function for all
α > 0. Note however that functions with exponential decay such as f(t) =
t−2 exp(−αt) are not admissable because they violate (I-0).

Now we examine some of our earlier results to see their generalized versions.
The following is an analogue of Lemma 3.1(a,c); part (b) of that lemma does not
generalize.

Lemma 7.1. Let (X,d) be a metric space with fixed base point p ∈ X, and let
f be a C-admissable inversion function for some C > 2.
(a) The inequalities in (7.1) hold for all x, y ∈ Invp,f (X) and dp,f is a distance

on Invp,f (X).
(b) (Invp,f (X),dp,f ) is bounded if and only if p is an isolated point in (X,d) in

which case

C−2

(
F(δ)∧

[
diam(Xp)f (δ)

2

])
≤ diamp,f (X̂p) ≤ CF(δ),

where δ = d(p,Xp) > 0, and diamp,f denotes diameter with respect to the
metric dp,f .



884 STEPHEN M. BUCKLEY, DAVID A. HERRON & XIANGDONG XIE

Proof. It suffices to verify the inequalities in (7.1) for x, y ∈ Xp, for if X is
unbounded and one of these points happens to be p′, then we simply look at the
appropriate limit. The right hand inequalities there follow from the definitions
of dp,f and ip,f . In fact if d(x,p) ≤ d(y,p), then dp,f (x,y) ≤ ip,f (x,y) ≤
F(d(x,p)).

We assume d(x,p) ≤ d(y,p) and prove the leftmost inequality. Thus ei-
ther d(x,y) ≤ d(x,p), in which case ip,f (x,y) = d(x,y)f(d(x,p)), or
d(x,y) > d(x,p) and ip,f (x,y) = F(d(x,p)). Let x0, . . . , xk be an arbi-
trary sequence of points in Xp with x0 = x and xk = y . We consider two main
cases. If d(xi, p) ≤ 2d(x,p) for all i, then it follows that

k∑
i=1

ip,f (xi, xi−1) ≥ C−1
k∑
i=1

[d(xi, xi−1)∧ d(x,p)]f (d(x,p))

≥ C−1[d(x,y)∧ d(x,p)]f (d(x,p))

= C−1ip,f (x,y).

Note that the first inequality (inside the summation sign) follows by either (I-1)
or (I-0) depending on whether or not d(xi−1, p)∧ d(xi, p) ≤ d(x,p).

Suppose instead that there exists some j ∈ {1, . . . , k} such that d(xj, p) >
2d(x,p); we choose the smallest such j. We consider two subcases. First, assume
some j′ ∈ {1, . . . , j} exists so that

d(xj′−1, p)
d(xj′ , p)

∉ [ 1
2 ,2].

If d(xj′−1, p)/d(xj′ , p) < 1
2 , define u = xj′−1 and v = xj′ ; otherwise switch

the definitions of u, v. Then d(u,p) ≤ 2d(x,p) and so again by either (I-0) or
(I-1),

j′∑
i=1

ip,f (xi, xi−1) ≥ ip,f (u,v) = F(d(u,p))

≥ C−1F(d(x,p)) ≥ C−1ip,f (x,y).

Next, assume d(xi−1, p)/d(xi, p) ∈ [ 1
2 ,2] for all i ∈ {1, . . . , j}. Let G(t) =∫ D

t
f (s)ds for 0 < t < D = diam(X). We claim that if u, v ∈ Xp and

d(u,p)/d(v,p) ∈ [ 1
2 ,2], then

|G(d(u,p))−G(d(v,p))| ≤ Cip,f (u,v).
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Assuming this claim for the moment, we see by the triangle inequality and (I-0)
that

k∑
i=1

ip,f (xi, xi−1) ≥
j∑
i=1

ip,f (xi, xi−1)

≥ C−1
j∑
i=1

|G(d(xi, p))−G(d(xi−1, p))|

≥ C−1[G(d(x,p))−G(2d(x,p))]

≥ C−2F(d(x,p)) ≥ C−2ip,f (x,y).

To justify the claim, we may assume d(u,p) ≤ d(v,p). By (I-0) we see that

0 ≤ G(d(u,p))−G(d(v,p)) ≤ C[d(v,p)− d(u,p)]f (d(u,p)).

But

d(v,p)− d(u,p) = [d(v,p)− d(u,p)]∧ d(u,p) ≤ d(u,v)∧ d(u,p).

Substituting this last estimate into the previous one substantiates the claim.
It is easy to deduce the first assertion in (b) from (I-2). Suppose δ = d(p,Xp) >

0. The upper bound diamp,f X̂p ≤ CF(δ) follows from (7.1) along with (I-1). For
the lower bound, let ε > 0 and select points aε, bε ∈ Xp with d(aε,p) ≤ δ+ ε,
d(bε, p) ≥ d(aε,p), and d(aε, bε) ≥ (diam(Xp) − ε)/2. Using part (a), we see
that

diamp,f X̂p ≥ dp,f (aε, bε) ≥ C−2ip,f (aε, bε)

= C−2[d(aε, bε)∧ d(aε,p)]f (d(aε, p)).

Letting ε → 0, and using continuity of f , we deduce that

diamp,f X̂p ≥ C−2

[
diam(Xp)

2
∧ δ

]
f(δ)

= C−2

([
diam(Xp)f (δ)

2

]
∧ F(δ)

)
. ❐

There are also generalized versions of the later results in Section 3. We leave this
task mainly to the reader, with a few exceptions. First we establish a generalized
version of Proposition 3.3 because there is a wrinkle in the result compared with
the original version: the composition of a pair of generalized inversions gives a
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bilipschitz mapping as long as the associated inversion functions are in some sense
dual to each other.

For duality, we only consider unbounded spaces. We say that two admissable
inversion functions fi : (0,∞) → (0,∞), i = 1, 2, are C-quasidual, C ≥ 1, if the
associated functions Fi(t) := tfi(t) satisfy the conditions

t
C
≤ F1(F2(t)) ≤ Ct and

t
C
≤ F2(F1(t)) ≤ Ct.

Note that when t ' s, f1(t)f2(F1(s)) ' 1. A pair of 1-quasidual admissable
inversion functions is given by f1(t) = t−α and f2(t) = t−α/(α−1) for α > 1.

In the following proof, an inequality of the form A Ü B between two non-
negative quantities A, B means that A ≤ C0B, where C0 depends only on the
constants C, C′ in the statement of the lemma, and A ' B means that A Ü B Ü A.
Recall that for an unbounded space X we let p′ ∈ Invp,f (X) correspond to the
point at infinity.

Lemma 7.2. Let (X,d) be an unbounded metric space. Suppose f1, f2 are C-
admissable inversion functions that are C′-quasidual, where C > 2, C′ ≥ 1. Fix
p ∈ X and let d′ = (dp,f1)p′,f2 denote the distance on X′ = Invp′,f2(Invp,f1 X).
There exists a constant C′′ = C′′(C,C′) > 0 such that:

(a) if p is a non-isolated point, then the identity map (X,d) id
---------------------------------------------→ (X,d′) = (X′, d′)

(where p , p′′) is C′′-bilipschitz;

(b) if p is an isolated point, then the identity map (Xp,d)
id
---------------------------------------------→ (Xp,d′) is C′′-

bilipschitz.

Proof. We associate F1, F2 with f1, f2, respectively. For brevity, we write
|z| = d(z,p). Suppose x, y ∈ Xp, with |x| ≤ |y|. Then

dp,f1(x,y) = [d(x,y)∧ |x|]f1(|x|).
By (I-1) and (I-0), F1(|y|) Ü F1(|x|) and f2(F1(|x|)∧ F1(|y|)) ' f2(F1(|y|)),
so by (7.1)

d′(x,y) ' [ip,f1(x,y)∧ F1(|y|)] · f2(F1(|y|))(7.2)

' [[(d(x,y)∧ |x|)f1(|x|)]∧ F1(|y|)
] · f2(F1(|y|)).

Suppose d(x,y) ≤ |x|/2, so |y| ' |x| and f1(|x|) ' f1(|y|). Then

d′(x,y) ' [[d(x,y)f1(|x|)]∧ F1(|y|)
] · f2(F1(|y|))

' [d(x,y)f1(|x|)f2(F1(|y|))]∧ |y|,
where the last inequality follows by distributivity and quasiduality. Now quasidu-
ality and |x| ' |y| imply that f1(|x|)f2(F1(|y|)) ' 1, so d′(x,y) ' d(x,y)∧
|y| = d(x,y) as required.
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Suppose d(x,y) ≥ |x|/2. Then d(x,y) ' |y| (this is clear if d(x,y) ≥
2|x|; for intermediate values of d(x,y), use the assumption |y| ≥ |x|). As
before, F1(|y|) Ü F1(|x|), so it follows from (7.2) and quasiduality that

d′(x,y) ' (F1(|x|)∧ F1(|y|)) · f2(F1(|y|))
' F1(|y|)f2(F1(|y|)) ' |y| ' d(x,y).

Finally, to prove that d′(x,p′′) ' d(x,p) when p is non-isolated, we observe
that

d′(x,p′′) ' F2(ip,f1(x,p
′)) = F2(F1(|x|)) ' |x|. ❐

In the following, δp,f (·) is the dp,f -distance to the boundary ∂p,fΩ of Ω as a
subspace in Invp,f (X). Its proof is similar to that of Lemma 3.6 and so is left to
the reader.

Lemma 7.3. Let Ω ⊂ Xp = X \ {p} (for some fixed base point p ∈ X) be an
open subspace of (X,d), and let f be a C-admissable inversion function, C > 2. Then
for all x ∈ Ω:

(a) δp,f (x) ≥ (F(d(x,p))∧ [δ(x)f(d(x,p))])/C3,
(b) δ(x) ≥ (d(x,p)∧ [δp,f (x)/f (d(x,p))])/C .

We state but do not prove a generalized version of Proposition 4.2.

Proposition 7.4. If (X,d) is locally c-quasiconvex, p ∈ X, and f is a C-
admissable inversion function, then (Xp,dp,f ) is locally b-quasiconvex for all b >
Cc.

Finally, here is a generalized version of Theorem 4.6. Below kp,f denotes
quasihyperbolic distance for Ω as a subspace in Invp,f (X).

Theorem 7.5. Let (X,d) be complete and fix a base point p ∈ X. Let f be a
C-admissable inversion function. Suppose Ω ⊂ Xp is a locally compact, open, locally
c-quasiconvex subspace with ∂Ω 6= ∅ 6= ∂p,fΩ. Then the identity map id : (Ω, k)→
(Ω, kp,f ) is M-bilipschitz, where M = cC[a∨ (2bC2)], b is as in Theorem 4.6,

a =


1 if Ω is unbounded,

CDlog2(C/2) if Ω is bounded,

and D = 1+ diamΩ/[d(p, ∂Ω)∨ (diam(∂Ω)/2)].
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Proof. The proof is broadly similar to that of Theorem 4.6. Arguing as there,
we see that

L(x, id) ≤ L(x, j) · L(x,h) · L(x, i−1) ≤ 2cC
δp,f (x)

· f(d(x,p)) · δ(x),

L(x, id−1) ≤ L(x, i) · L(x,h−1) · L(x, j−1) ≤ c
δ(x)

· 1
f(d(x,p))

· δp,f (x).

Thus, it suffices to show that δ(x)f(d(x,p)) ' δp,f (x); more precisely, we must
establish

∀x ∈ Ω :
2cCδ(x)f(d(x,p)) ≤ Mδp,f (x) ,
cδp,f (x) ≤Mδ(x)f(d(x,p)).

Recalling the definition of M and the estimates from Lemma 7.3 we see that the
above inequalities are equivalent to

∀x ∈ Ω :
δ(x) ≤ bd(x,p) ,
δp,f (x) ≤ aF(d(x,p)).

The first estimate was proved in Theorem 4.6, so it suffices to show δp,f (x) ≤
aF(d(x,p)).

IfΩ is unbounded, then p′ ∈ ∂p,f (Ω) and δp,f (x) ≤ ip,f (x,p′) = F(d(x,p)).
We assume Ω is bounded. (In this case, ∂Ω 6= {p} because ∂p,fΩ 6= ∅.) Pick
q ∈ ∂Ω so that d(p, q) ≥ d(p, ∂Ω)∨ 1

2 diam(∂Ω). Then

δp,f (x) ≤ ip,f (x, q) ≤ F(d(x,p)∧ d(q,p)).
If d(x,p) ≤ d(q,p), then δp,f (x) ≤ F(d(x,p)). If d(q,p) < d(x,p) ≤
2d(q,p), then

δp,f (x) ≤ F(d(q,p)) ≤ CF(d(x,p)).
Finally, suppose d(x,p) ≥ 2d(q,p) and let n ∈ N be such that

2n ≤ d(x,p)
d(q,p)

< 2n+1.

Appealing to (I-0) n+ 1 times we obtain

f(d(q,p)) ≤ Cf(2d(q,p)) ≤ · · · ≤ Cnf(2nd(q,p)) ≤ Cn+1f(d(x,p))

which yields δp,f (x) ≤ F(d(q,p)) ≤ C(C/2)nF(d(x,p)) ≤ aF(d(x,p)),
where the last inequality holds because

2n ≤ d(x,p)
d(q,p)

≤ 1+ d(x, q)
d(q,p)

≤ 1+ diamΩ
d(p, ∂Ω)∨ 1/2 diam(∂Ω) . ❐
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[14] J. VÄISÄLÄ, Lectures on n-dimensional Quasiconformal Mappings, Springer-Verlag, Berlin, 1971,

Lecture Notes in Mathematics, Vol. 229. MR 0454009 (56 #12260)
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inversion; sphericalization; quasimöbius; quasihyperbolic metric; uniform space.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 51F99 (30C65, 30F45).

Received : January 8th, 2007; revised: March 26th, 2007.
Article electronically published on April 21st, 2008.


	1. Introduction
	2. Preliminaries
	2.A. General metric space information.
	2.B. Quasihyperbolic distance.

	3. Metric Space Inversions
	3.A. Definitions and basic properties.
	3.B. Sphericalization.
	3.C. Elementary mapping properties.
	3.D. Subspaces and notation.

	4. Inversions and Quasihyperbolic Distance
	4.A. Linear distortion.
	4.B. Inversions are quasihyperbolically bilipschitz.

	5. Inversions and Uniformity
	5.A. Uniform subspaces.
	5.B. Main results and examples.
	5.C. Proofs of Theorem 5.1 (a) and (b).
	5.7. Proof of Theorem 5.1 (a)
	5.8. Proof of Theorem 5.1 (b)
	5.D. Proof of Theorem 5.1 (c).
	5.10. Proof of Theorem 5.1 (c).
	5.14. Proof of Proposition 5.9.

	6. Inversions and Quasiconvexity
	6.A. Annular quasiconvexity.
	6.B. Invariance of quasiconvexity
	6.C. Connection with uniformity.

	7. Generalized Inversion
	Acknowledgement

	References

