
5/15/22, 3:15 PM Cleaning NFL Play-by-Play Data

localhost:8888/nbconvert/html/Documents/NFL_project/Cleaning NFL Play-by-Play Data.ipynb?download=false 1/6

Cleaning and Preprocessing of NFL Play-by-
Play Data
This jupyter notebook walks through the cleaning and preprocessing of an NFL play-by-play

data set that can be found here (https://www.kaggle.com/datasets/toddsteussie/nfl-play-

statistics-dataset-2004-to-present).

This data set contains various data points for every play completed in an NFL game from the

years 2004-2019. The overall goal of this project is to use the data set to predict the

success of calling a "run" or "pass" play at any given time in the game. There is a separate

notebook where I implement various machine learning models to make this prediction. The

purpose of this notebook is to walk through how I cleaned this data set for use by these

machine learning models.

Below is a complete list of everything done in this notebook (in the same order that the cells

are executed). There are also small annotations throughout this notebook mentioning what

is being done at each step.

�. Define a "success" function that tells us whether each play was a success or not, based

on post-play data (more details on this metric below).

�. Read in the data and toss out any data points where "no play" is 1 in the data set. This

indicates that there was a pre-snap penalty or something similar that happened and

thus, no play was ever run.

�. Take only rushing and passing plays since we are not interested in special teams plays

�. One-hot encode the "Huddle" section of the data. There are a significant amount of

Nans in this column of the data. For these plays, we set "Huddle" to 0.5 (halfway

between "huddle" and "no huddle").

�. Convert team ID numbers to team names for easier interpretation

�. Replace "gameID" with "HomeTeamID" and "VisitorTeamID" so that the algorithm has

access to who is the home team and who is the away team.

�. Create a new column called "HomeTeamPossession" that tracks whether or not the

home team has possession of the ball.

�. One-hot encode "HomeTeamID", "AwayTeamID", and "PlayType".

�. Create new column called "Score_diff" that tracks the difference in score between the

team on offense and the team of defense

https://www.kaggle.com/datasets/toddsteussie/nfl-play-statistics-dataset-2004-to-present

5/15/22, 3:15 PM Cleaning NFL Play-by-Play Data

localhost:8888/nbconvert/html/Documents/NFL_project/Cleaning NFL Play-by-Play Data.ipynb?download=false 2/6

��. Add a categorical column called "success" that tracks whether the play was a success

or not. This is calculated according to the rules laid out below.

��. Select only the pre-play information to give to the prediction algorithm. This ensures

that our algorithm doesn't have access to data like "yards gained" because we want the

algorithm to predict things based only on pre-play data.

��. Convert GameClock variable to float data type

��. Save the cleaned data set for use by the models

Rules for success

Below are a description of the rules used by the add_success function to evaluate whether

each play was a success or not. I chose these rules based on what I feel should be

considered a successful football play. The rules are different depending on what down it is.

In the data set, successes are represented by 1, failures by -1, and neutral plays by 0.

Any down:

if you get a first down or score, that's a success

First down:

success = gaining (3/10) or greater of yards to the sticks

neutral = between 1 yard and (3/10) of yards to the sticks

fail = 0 yards or negative yards

Second down:

success = gaining (1/2) or greater of yards to the sticks

neutral = between 1 yard and (1/2) of yards to the sticks

fail = 0 or negative yards

Third down:

success = first down

neutral = nothing

fail = not first down

Fourth down:

success = first down

neutral = nothing

fail = not first down

/Users/Michaelray/Documents/NFL_project/archive (3)

In [1]: cd archive\ (3)/

5/15/22, 3:15 PM Cleaning NFL Play-by-Play Data

localhost:8888/nbconvert/html/Documents/NFL_project/Cleaning NFL Play-by-Play Data.ipynb?download=false 3/6

In [2]: import pandas as pd
import numpy as np
from sklearn import preprocessing

In [3]: #Define function to calculate success metric and add it as a column to a DataFr
def add_success(df):
 '''Adds a success row to the DataFrame df,
 which will be used as the target variable
 in our models. The target variable is 1
 for a success, 0 for neutral, and -1 for
 failure (definitions above)

 Parameters

 df - Give a DataFrame with all the data we
 have above

 Returns

 new_df - a new DataFrame with a success target
 variable added which can be accessed with
 new_df['success']'''

 down = df['down']
 distance = df['distance']
 yds_gained = df['netYards']

 #Implement the rules set at top of document
 success = pd.DataFrame(columns=['success'])
 df = df.join(success)

 #Always a success if we got a first down
 df.loc[df['firstDown'] == 1, 'success'] = 1

 #First down success metric
 df.loc[(df['firstDown']!=1) & (down==1) & ((3/10)*distance<=yds_gained), 's
 df.loc[(df['firstDown']!=1) & (down==1) & (0<yds_gained) & (yds_gained<(3/1
 df.loc[(df['firstDown']!=1) & (down==1) & (yds_gained<=0), 'success'] = -1

 #Second down success metrics
 df.loc[(df['firstDown']!=1) & (down==2) & ((1/2)*distance<=yds_gained), 'su
 df.loc[(df['firstDown']!=1) & (down==2) & (0<yds_gained) & (yds_gained<=(1/
 df.loc[(df['firstDown']!=1) & (down==2) & (yds_gained<=0), 'success'] = -1

 #Third and fourth down success metrics only need one line because we alread
 #caught some of these when we checked for first down
 df.loc[(df['firstDown']!=1) & (down==3), 'success'] = -1
 df.loc[(df['firstDown']!=1) & (down==4), 'success'] = -1

 return df

In [4]: df = pd.read_csv('plays.csv')
games = pd.read_csv('games.csv')

all plays up to index 41,709 do not have a corresponding entry in games.csv s
df = df.iloc[41709:,:]

In [5]: #Get rid of any column that has noplay set to 1.

5/15/22, 3:15 PM Cleaning NFL Play-by-Play Data

localhost:8888/nbconvert/html/Documents/NFL_project/Cleaning NFL Play-by-Play Data.ipynb?download=false 4/6

played_df = df[df.noPlay == 0]

#Include only rushing and passing plays
special_teams = ['kickoff', 'xp', 'spike', 'field goal']
regular_plays = ['rush', 'pass']
rp_data = played_df.loc[(played_df['playType'] == 'rush') | (played_df['playTyp

In [6]: #Turn huddle into numerical variable

huddle_df = pd.DataFrame(np.empty(rp_data.shape[0]), columns=['huddleNew'])
rp_data = rp_data.join(huddle_df)

rp_data.loc[rp_data['huddle'] == 'huddle', 'huddleNew'] = 0
rp_data.loc[rp_data['huddle'] == 'no huddle', 'huddleNew'] = 1
rp_data.loc[rp_data['huddle'].isna(), 'huddleNew'] = 0.5

rp_data = rp_data.drop('huddle', axis=1)
rp_data = rp_data.rename(columns={"huddleNew" : 'huddle'})

In [7]: #Turn TeamId's into team names
team_dict = {'Cardinals':3800, 'Ravens':325 , 'Falcons':200 , 'Bills':610 , 'Pa
 'Bengals':920, 'Bears':810, 'Browns':1050, 'Cowboys':1200, 'Bronco
 'Lions':1540, 'Texans':2120, 'Packers':1800, 'Colts':2200, 'Rams':
 'Jaguars':2250, 'Vikings':3000, 'Chiefs':2310, 'Saints':3300, 'Rai
 'Giants':3410, 'Chargers':4400, 'Eagles':3700, 'Dolphins':2700, 'N
 'Patriots':3200, 'Seahawks':4600, 'Jets':3430, 'Buccaneers':4900,
 'Washington':5110, 'Titans':2100}
hometeam_dict = {'Cardinals home':3800, 'Ravens home':325 , 'Falcons home':200
 'Bengals home':920, 'Bears home':810, 'Browns home':1050, 'Cowboys
 'Lions home':1540, 'Texans home':2120, 'Packers home':1800, 'Colts
 'Jaguars home':2250, 'Vikings home':3000, 'Chiefs home':2310, 'Sai
 'Giants home':3410, 'Chargers home':4400, 'Eagles home':3700, 'Dol
 'Patriots home':3200, 'Seahawks home':4600, 'Jets home':3430, 'Buc
 'Washington home':5110, 'Titans home':2100}
awayteam_dict = {'Cardinals away':3800, 'Ravens away':325 , 'Falcons away':200
 'Bengals away':920, 'Bears away':810, 'Browns away':1050, 'Cowboys
 'Lions away':1540, 'Texans away':2120, 'Packers away':1800, 'Colts
 'Jaguars away':2250, 'Vikings away':3000, 'Chiefs away':2310, 'Sai
 'Giants away':3410, 'Chargers away':4400, 'Eagles away':3700, 'Dol
 'Patriots away':3200, 'Seahawks away':4600, 'Jets away':3430, 'Buc
 'Washington away':5110, 'Titans away':2100}

team_dict = {v: k for k, v in team_dict.items()}
hometeam_dict = {v: k for k, v in hometeam_dict.items()}
awayteam_dict = {v: k for k, v in awayteam_dict.items()}

In [8]: #Go from gameId in rp_data to homeTeamId and awayTeamId
game_info = games[['gameId', 'homeTeamId', 'visitorTeamId']]
game_list = pd.DataFrame(rp_data['gameId'])
homeTeamId = pd.DataFrame(columns=['homeTeamId'])
awayTeamId = pd.DataFrame(columns=['awayTeamId'])
rp_data = rp_data.join(homeTeamId)
rp_data = rp_data.join(awayTeamId)

for game_index in np.arange(game_info['gameId'].shape[0]):
 game = game_info.loc[game_index, 'gameId']

5/15/22, 3:15 PM Cleaning NFL Play-by-Play Data

localhost:8888/nbconvert/html/Documents/NFL_project/Cleaning NFL Play-by-Play Data.ipynb?download=false 5/6

 rp_data.loc[rp_data['gameId'] == game, 'homeTeamId'] = game_info.loc[game_i
 rp_data.loc[rp_data['gameId'] == game, 'awayTeamId'] = game_info.loc[game_i

In [9]: #Now create homeTeamPos column that contains 1 if home team has possession and
#We don't need an awayTeamPos column because this is redundant information

homeTeamPos = pd.DataFrame(np.zeros(rp_data.shape[0]), index=rp_data.index, col
rp_data.join(homeTeamPos)

rp_data.loc[rp_data['homeTeamId'] == rp_data['possessionTeamId'], 'homeTeamPoss
rp_data.loc[rp_data['awayTeamId'] == rp_data['possessionTeamId'], 'homeTeamPoss

In [10]: #Now go from team Id numbers to team names for homeTeamId, awayTeamId
rp_data['homeTeamId'] = rp_data['homeTeamId'].map(hometeam_dict)
rp_data['awayTeamId'] = rp_data['awayTeamId'].map(awayteam_dict)

In [11]: #One-hot encode homeTeamId, awayTeamId, playType
hometeamid_dum = pd.get_dummies(rp_data['homeTeamId'])
awayteamid_dum = pd.get_dummies(rp_data['awayTeamId'])
pt_dum = pd.get_dummies(rp_data['playType'])

rp_data = pd.concat([rp_data, hometeamid_dum], axis=1).drop('homeTeamId', axis=
rp_data = pd.concat([rp_data, awayteamid_dum], axis=1).drop('awayTeamId', axis=
rp_data = pd.concat([rp_data, pt_dum], axis=1).drop('playType', axis=1)

In [12]: #Take the scores of home and visiting teams along with homeTeamPossession to ge
#between possessing team and visiting team (convention is possessing score - no

score_diff = pd.DataFrame(np.empty(rp_data.shape[0]), columns=['scoreDiff'])
rp_data = rp_data.join(score_diff)

rp_data.loc[rp_data['homeTeamPossession'] == 1.0, 'scoreDiff'] = rp_data.loc[rp
rp_data.loc[rp_data['homeTeamPossession'] == 0.0, 'scoreDiff'] = rp_data.loc[rp

In [13]: #Add success column
rp_data = add_success(rp_data)

In [14]: #Over half of the data points for formations are null, so just drop it
#Select only the pre-play information
desired_cols = ['playId', 'gameId', 'playSequence', 'quarter', 'playNumberByTea
 'gameClock', 'down', 'distance', 'distanceToGoalPre', 'evPre',
 'homeScorePre', 'visitingScorePre', 'huddle',

 'Bears home', 'Bengals home', 'Bills home',
 'Broncos home', 'Browns home', 'Buccaneers home', 'Cardinals home
 'Chiefs home', 'Colts home', 'Cowboys home', 'Dolphins home', 'Ea
 'Falcons home', 'Giants home', 'Jaguars home', 'Jets home', 'Lion
 'Niners home', 'Packers home', 'Panthers home', 'Patriots home',
 'Rams home', 'Ravens home', 'Saints home', 'Seahawks home', 'Stee
 'Titans home', 'Vikings home', 'Washington home', 'Bears away', '
 'Broncos away', 'Browns away', 'Buccaneers away', 'Cardinals away
 'Chiefs away', 'Colts away', 'Cowboys away', 'Dolphins away', 'Ea
 'Giants away', 'Jaguars away', 'Jets away', 'Lions away', 'Niners
 'Panthers away', 'Patriots away', 'Raiders away', 'Rams away', 'R
 'Seahawks away', 'Steelers away', 'Texans away', 'Titans away', '

 'homeTeamPossession', 'pass', 'rush', 'success']

5/15/22, 3:15 PM Cleaning NFL Play-by-Play Data

localhost:8888/nbconvert/html/Documents/NFL_project/Cleaning NFL Play-by-Play Data.ipynb?download=false 6/6

0

We've got all our desired data with no Nans, so let's save the data to a csv file

rp_data = rp_data[desired_cols]

In [15]: rp_data = rp_data[desired_cols]

In [16]: #Convert gameClock to number of seconds
clock_series = rp_data['gameClock'].str.split(pat='(').str[1]
clock_series = clock_series.str.split(pat=')').str[0]
minutes = clock_series.str.split(pat=':').str[0].astype(int)
seconds = clock_series.str.split(pat=':').str[1].astype(int)
gameClockSec = pd.DataFrame({'gameClockSec':minutes*60+seconds})
rp_data = rp_data.join(gameClockSec)
rp_data = rp_data.drop(columns=['gameClock'])
rp_data = rp_data.rename(columns={"gameClockSec" : 'gameClock'})

In [17]: rp_data.isna().sum().sum()

Out[17]:

In [18]: #We've got effectively 18 separate data points now. We'll save the model data t
rp_data.to_csv('model_data.csv')

