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1 Introduction

A quantum field theory with a given spectrum and algebra of local operators may

admit distinct “global structures” encoded in a choice of extended (line, surface, etc.)

“probe” operators. In the case of 4d Yang-Mills (YM) theories these global structures

are identified with the global form of the gauge group together with additional discrete

theta angles [1–3]. The choice of global structure is also related to the higher-form

symmetries of the theory [4].

In this paper we explain how this global structure is reflected in the geometry of

the Coulomb branch of vacua of 4d N=2 field theories. We will focus here on only the

line operator spectrum and the 1-form symmetry of these theories. A simple example

to keep in mind is 4d N=4 supersymmetric YM (sYM) with gauge algebra su(2),

which admits three compatible assignments of line-operator charges corresponding to

three different global forms SU(2), SO(3)+ and SO(3)−. This theory has an exactly

marginal coupling taking values in a “conformal manifold”. The three global structures

form a single orbit under S-duality, meaning that upon traversing non-trivial loops in
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the conformal manifold, they are interchanged. Finally, this theory has a Z2 1-form

symmetry under which the line operators may be charged.

This global structure data is completely encoded in the charge lattice and its Dirac

pairing which are physical attributes of the low energy theory in a Coulomb vacuum.

One aim of this paper is to point out that then the global structure is encoded in

the Coulomb branch geometry, and to explain this encoding. This point has already

been made in the context of lagrangian theories of class S, see [2, sections 6.3 and

7.3.1], [5, section 5.4], and for SU(2) sYM [6, section 4.5]. We emphasize, however,

that the notion of global structure interpreted in this way applies just as well to non-

lagrangian theories where there is no gauge group. We also point out that the encoding

of the global structure in the Coulomb branch geometry cannot be as straightforward

in general as it is in the class S examples where to each distinct global structure (i.e.,

ones not related by S-duality) corresponds a distinct Coulomb branch geometry. In

particular, there are examples of theories whose different global structures are reflected

in the same choice of CB geometries.

A characteristic feature of N=2 QFTs is that they have a Coulomb branch, an r-

complex-dimensional manifold of u(1)r gauge theory vacua with massive charged fields.

The finite-energy states in these vacua carry electric and magnetic charges with respect

to each of these u(1)’s whose values form a rank-2r lattice, the charge lattice Λ of the

theory. Choose some basis of this lattice with respect to which a charge Q ∈ Λ is

represented by a 2r-tuple of integers, Q = (p1, . . . , pr, q1, . . . , qr).

The Dirac quantization condition [7] implies that there is a non-degenerate integral

pairing on the charge lattice, J : Λ × Λ → Z, which can be written in a basis as

J(Q1, Q2) = Q1JQ
t
2 where the right side is matrix multiplication with Q1 and Q2

interpreted as row vectors and J as a 2r× 2r integer antisymmetric matrix. If there is

a basis of Λ in which J has the r × r block form

J =

(
1

−1

)
, (1.1)

i.e., a basis in which the Dirac pairings take their minimal allowed values, then the

Dirac pairing is principal. But there is no reason that such a basis needs to exist, in

which case the pairing is non-principal. For example, most N=4 sYM theories have

non-principal Dirac pairings.

The possible choices of global structure of the theory, and their associated 1-form

symmetries, can be unambiguously read off from knowledge of the Dirac pairing on

the charge lattice. Indeed the different global structures correspond to the possible

inequivalent refinements of the charge lattice on which the Dirac pairing extends to a

principal pairing. These refined lattices, L, are possible charges of a maximal mutually
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local set of line operators [1–3], so we refer to them as line lattices. This description

of the global structures of an N=2 field theory does not depend on its having a gauge

theory description, so applies equally well, for example, to isolated strongly-coupled

N=2 superconformal field theories (SCFTs) for which there is no gauge group.

For N=2 SCFTs with exactly marginal couplings, the S-duality group acts on the

global structures, organizing them into distinct orbits. In the su(2) N=4 example

mentioned above, all three global structures form a single S-duality orbit, but, by

contrast, the 7 global structures of the su(4) N=4 theory form 2 separate S-duality

orbits [1].

A feature of N = 2 field theories, which was not particularly used in the original

analysis of global structures [1], is that the low energy effective theory in the Coulomb

vacua can be geometrically encoded in the special Kähler (SK) geometry of the theory’s

Coulomb branch [8–11]. The Seiberg-Witten curve — a family of Riemann surfaces

with a certain 1-form varying holomorphically over the Coulomb branch — is a way of

describing the SK structure.

The main goal of this paper is to clarify the extent to which the SK structure

is sensitive to the global structures of the field theory. We will illustrate this in the

relatively simple case of N = 4 sYM theories, but our analysis applies generally to all

N = 2 theories. More specifically:

• We clarify the distinction between two objects which are often conflated, the

charge lattice Λ of the theory and the homology lattice ΛX of the Seiberg-Witten

curve. In particular, if the intersection pairing on ΛX is principal, then ΛX is

naturally identified with a choice of line lattice L rather than with the charge

lattice Λ.

• We show that a given Coulomb branch Kähler geometry can admit a discrete set

of distinct SK “models” which differ by the symplectic pairing on their homology

lattices.

• We point out that the S-duality group which is discernible from the Coulomb

branch geometry depends on the SK model. In particular, the S-duality group

“visible” in the SK model in which the homology lattice is the charge lattice

is larger than the physical S-duality group as it does not distinguish between

the different global structures of the theory. Thus, for example, these “coarse”

S-duality groups are SL(2,Z) for all the N=4 sYM theories.

The second point, in particular, has been made before in the context of class-S examples

in [2, 5, 6], as mentioned above. This point would seem to predict that (a) there are
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different principally-polarized “SK models” of a Coulomb branch corresponding to the

different global structure S-duality orbits; (b) there is a unique model with maximally

non-principal pairing whose homology lattice equals the charge lattice; and (c) there

will exist models corresponding to non-maximal choices of line lattices with pairings

whose invariant factors divide those of the maximally non-principal pairing model. In

fact, however, it seems that prediction (a) is incorrect, as we will point out a counter-

example shortly.

As part of the exposition of the above points, we re-derive some results which,

while known to experts, may not be more widely appreciated. In particular, we derive

from well-known semiclassical field theory facts the (non-principal) Dirac pairing on

the charge lattice of N = 4 sYMs. These results are consistent with those of [12]. Also,

we show how to re-derive the results of [1] by counting maximal symplectic sublattices,

and present simple algorithms for doing so.

In this work we only apply our analysis to re-derive the global structures and

one-form symmetries of N = 4 sYM theories as examples, but our techniques apply

more generally to N = 2 theories for which many results are by now known [12–

21]. In particular, an immediate implication of the known classification of rank-1

Coulomb branch geometries [22–25] is that since — with one exception — all have

only principally polarized homology lattices, it follows that all rank-1 SCFTs have

principal Dirac pairings, their charge and line lattices coincide, and they have no 1-

form symmetries. This agrees with the predictions from string constructions and BPS

quivers [12–21]. The one exception is the Coulomb branch geometry of the N=2∗ su(2)

sYM theory which also has a model with non-principally polarized homology lattice,

which is consistent with the field theory expectation. We describe this example in detail

in section 4.4 below.

N=3 Coulomb branches which to not admit principal polarizations. A class

of theories for which the derivations presented here could be even more directly applied

are N=3 theories [26–28]. In fact the moduli spaces of N=3 theories closely resem-

ble those of the N=4 theories described here, since both, as complex geometries, are

complex orbifolds by reflection groups. For N=4 theories the orbifold groups are the

Weyl groups of the gauge algebras (which are crystallographic real reflection groups),

which are substituted by the more general crystallographic complex reflection groups

in N=3 theories [29–31]. This suggests that a perhaps straightforward generalization

of the analysis in this paper will allow the computation of one-form symmetries of all

N=3 theories in a uniform way.

Not all crystallographic complex reflection group orbifolds admit SK models for

which the homology lattice is principally polarized. For example, at rank 2 the ex-
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ceptional complex reflection group G8 in the Shephard-Todd classification [32] (with

Coulomb branch scaling dimensions 8 and 12) only admits integer symplectic forms

with minimum invariant factors (1,2), so are never principal; see section 3.2 of [29].

Furthermore, this Coulomb branch arises as the moduli space of an N=3 SCFT with

a known M-theory construction [33, 34]. The counting of global structures of theories

with non-principal Dirac pairing, reviewed below, implies that this theory has at least 3

distinct global structures. But the absence of an SK model with principal polarization

means that no Coulomb branch geometries exist which realize a choice of maximal line

lattice for this theory. It remains to be understood what the implications of this fact

are and whether the absence of a principally polarized model for the Coulomb branch

of this theory has an interpretation in terms of its spectrum of extended operators or

its generalized symmetry. This questions certainly deserves further study.

The rest of the paper is organized as follows. Section 2 reviews the definitions

of and relations between the charge lattice, the Dirac pairing, and the possible line

lattices. We also review how these are related to the 1-form symmetry. Section 3

begins the discussion of N = 4 sYM theories by deriving their charge lattices and

Dirac pairings. Finally, section 4 discusses how the global structure (or, choice of

line lattice) appears in the SK structure of the Coulomb branch. We conclude the

section with an explicit discussion of low-rank examples. There are also three technical

appendices summarizing some basic properties of simple Lie algebras, discussing how

to bring symplectic pairings to canonical form, and showing how to count inequivalent

symplectic sublattices.

2 Charge lattices in 4d QFTs

Associated to each quantum field theory with a Coulomb phase, there is a linear space

of allowed possible deconfined gauge charges of finite energy states. In 4d these are

electric and magnetic charges. A vacuum is a Coulomb phase if there is a low en-

ergy U(1)r gauge theory with mass gap for all charged states; r is the rank of the

vacuum. Furthermore, we assume that there are states carrying electric and magnetic

charges with respect to each U(1) factor, so the linear space of possible charges has real

dimension 2r.1

Then the set of charges of finite-energy states which occur in the theory form a

rank-2r charge lattice, Λ ≃ Z2r. These include the charges of single-particle states,

1We exclude IR free non-abelian vacua or ones with non-compact U(1) gauge factors from our

definition of Coulomb phase.
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though there is no requirement that all lattice charges correspond to single-particle

states. The physically occurring charges form a lattice because if localized states2

with charges p and q occur, then there is a localized finite energy state with charge

p + q (e.g., an approximate 2-particle state with the particles sufficiently far apart).

Furthermore, all charges are commensurate by the Dirac quantization condition [7, 35–

37], which implies there is a Dirac pairing, a non-degenerate, antisymmetric, bilinear

map J : Λ× Λ → Z. It supplies the charge lattice with a symplectic structure.

Note that the normalization of J is not a matter of convention. For instance,

the value of the Dirac pairing between a pair of (sufficiently localized) dyonic states

measures the angular momentum carried by their electromagnetic field [38] in units of

~/2. With a common definition of electric and magnetic charges — e =
∫
S2 ∗F and

g = (4π)−1
∫
S2 F — the Dirac quantization condition reads eg = n/2, n ∈ Z. We

are implicitly using a different normalization of charges — e.g., by defining magnetic

charge to be g = (2π)−1
∫
S2 F — in which J is integral. This does not change the fact

that the normalization of J has a definite physical meaning.

With respect to a particular basis of the lattice, {e1, . . . , e2r}, the Dirac pairing

is represented by a non-degenerate antisymmetric 2r × 2r matrix Jab = J(ea, eb) ∈ Z.

There exists a symplectic basis in which J is skew-diagonal, i.e., is of the form

J =

(
D

−D

)
with D = diag{d1, . . . , dn}, di ∈ N. (2.1)

Furthermore, one can choose this basis so that

di | di+1. (2.2)

In this case the di are the unique invariant factors of the Dirac pairing, though the

symplectic basis is not unique. If di = 1 for all i we say the Dirac pairing is principal.

The existence and uniqueness of this invariant factor decomposition is ensured by the

structure theorem for finitely generated modules over a principal ideal domain, and

is reviewed — together with an algorithm for computing the invariant factors — in

appendix B.

For any electric and magnetic charges, whether they are in the charge lattice or

not, a “probe” Wilson-’t Hooft line operator can be defined by specifying appropri-

ate boundary conditions on the behavior of the electric and magnetic fields as one

approaches the line [39]. The electric and magnetic charges of Wilson-’t Hooft line

operators are u(1)E⊕u(1)M 1-form symmetry charges for each IR gauge u(1) factor [4].

2By localized in this context we mean only that the energy density falls off at least as fast as

ρ(t, ~x) ∼ |~x|−4 as |~x| → ∞.
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The set of these line operator charges should include charges in the charge lattice, Λ,

since in the IR limit any massive charged state can be approximated by the insertion

of a line operator located at the world-line of its center of mass [40]. The charges of

probe lines are restricted to lie in a lattice by Dirac quantization, which, for line opera-

tors, is the condition that they are mutually local or “genuine” line operators [41], i.e.,

that they are not the boundary of a topological surface operator that can be detected

by other genuine line operators. (For example, these topological surface operators are

the world-volume of the Dirac strings emanating from the world-line of a magnetic

monopole.) Thus the charges of genuine probe lines must have integral Dirac pairing

with charges in Λ [2].

This suggests defining the Dirac-dual lattice, ΛJ , with the interpretation as the

lattice of “possible” probe Wilson-’t Hooft line operator 1-form charges. It is the

maximal lattice in R⊗Z Λ such that

J(ΛJ ,Λ) ∈ Z. (2.3)

In other words it is integrally “dual” to Λ with respect to the Dirac pairing. The charge

lattice is a sublattice of the dual lattice of index

|ΛJ/Λ| = (PfJ)2 with PfJ = detD =
∏

i

di, (2.4)

so Λ is a proper sublattice of ΛJ if and only if J is non-principal. In terms of the

symplectic basis {ea, a = 1, . . . , 2r} in (2.1), the symplectic basis basis of ΛJ is

{d−1
i ei, d

−1
i ei+r, i = 1, . . . , r}

If Λ is a proper sublattice of ΛJ then the extension of the Dirac pairing to ΛJ will

not be integral, i.e., J(ΛJ ,ΛJ) /∈ Z. Indeed, in the symplectic basis given above,

J =

(
D−1

−D−1

)
on ΛJ . (2.5)

Define a line lattice, L ⊂ ΛJ , to be a maximal sublattice of ΛJ such that J(L,L) ∈ Z

[2]. A line lattice is thus interpreted as a maximal lattice of mutually local Wilson-’t

Hooft probe line operators of the low energy U(1)r gauge theory. It follows from its

definition that the extension of the Dirac pairing to L is principal, and that

|ΛJ/L| = |L/Λ| = PfJ. (2.6)

There can be finitely many inequivalent line sublattices; the number depends in a

complicated way on the prime decomposition of the invariant factors, di, of the Dirac

pairing; some simple examples are computed in appendix C.
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In the case of gauge theories, the choice of line lattice is associated to the choice of

global structure (including “discrete theta angles”) of the theory [1]. The connection

between the choice of line lattices and this global structure arises as follows. In gauge

theories for which there exist local operators in a Coulomb vacuum which create states

carrying (gauge) charges in Λ, Wilson-’t Hooft line operators carrying charges in Λ can

be screened. That is, there are gauge-invariant line segment operators consisting of

Wilson-’t Hooft lines which end on these local operators. In that case the (U(1)E ×

U(1)M)r 1-form group symmetry is broken to a discrete subgroup consisting of those

group elements which act trivially on all lines in Λ, since the S2’s which carry the 1-

form topological symmetry operators no longer link the line segments. If the minimum

charge in Λ with respect to a given U(1) 1-form symmetry factor is d, then that factor is

broken (at least) to its Zd subgroup. Therefore, in a basis corresponding to the invariant

factor decomposition (2.1), the 1-form symmetry group is broken (at least) to the finite

subgroup, known as the 1-form defect group [5, 42, 43]: D(1) =
⊕r

i=1 ((Zdi)E ⊕ (Zdi)M),

where, again, the dis are the invariant factors in (2.1). But, like the Dirac-dual lattice

ΛJ , the charges allowed in this group generally do not have integral Dirac pairing, so

the actual 1-form group is a maximal subgroup of D(1) mutually local charges (which

has cardinality
∏

i di). The choice of this subgroup is the global structure computed in

[1, 12]. The above description in terms of maximal Dirac-local subgroups of the finite

group D(1) can be recast in terms of L ⊂ ΛJ maximal Dirac-local sublattices. Since

Λ ⊂ L ⊂ ΛJ , we have the associated finite group inclusions L/Λ ⊂ ΛJ/Λ, and, by

working in the symplectic basis, it is easy to see that ΛJ/Λ = D(1).

An immediate consequence is that if there is a non-trivial global structure or 1-

form symmetry, then the Dirac pairing on the charge lattice is not principal. So from

this perspective, and the results of [1], it is now obvious that N = 4 sYM theories

will generally have non-principal Dirac pairings. In the next section we show how to

compute the Dirac pairings directly in the field theory.

The results derived in the next section agree with those which appeared in [12]. In

the derivation of [12], though, the Dirac pairing appears in a more indirect way, via the

symmetry TFT [44, 45], i.e., the topological sector of the non-invertible field theory

whose boundary theory is the four dimensional theory.

3 Non-principal Dirac pairings for N=4 super Yang-Mills

In the case of an N=4 sYM theory with simple gauge algebra g, in a Coulomb vacuum

the electric charges span the root lattice Γr of g since at weak coupling all fields are

in the adjoint representation. A semiclassical analysis shows that magnetic monopole

charges span the co-root lattice Γ∨

r , which is the “magnetic” root lattices of of g∨, the
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GNO or Langlands dual of g [39, 46–48]. (See appendix A for a review of simple Lie

algebra definitions.) So the charge lattice is

Λ = Γ∨

r ⊕ Γr, (3.1)

the span of the electric and magnetic sublattices. These sublattices are each lagrangian

with respect to J , so the Dirac pairing is determined by the r×r pairing B := J(Γr,Γ
∨

r )

between the two. And any integral non-degenerate B defines a potential Dirac pairing

on Λ.

The Dirac pairing is fixed up to normalization by demanding it be Weyl invariant.

Recall that the Weyl group is a discrete subgroup of the gauge group which acts on

the charge lattice, so any physical observable which is constant on the Coulomb branch

and so independent of the adjoint Higgs vev — such as the value of the Dirac pairing

between a pair of (sufficiently localized) charged states — must be invariant under the

Weyl group.

The Weyl group, W , of g and g∨ are the same. Given its linear action on Γr,

the magnetic Weyl action is determined by the semiclassical description of magnetic

monopoles [39, 46]. Indeed, by GNO duality, the magnetic root lattice is the dual of

the “electric” weight lattice, Γ∨

r ≃ (Γw)
∗,3 and so inherits a dual action of the Weyl

group.4 Let t ⊂ g be a Cartan subalgebra and t∗ ⊂ g∨ the dual Cartan subalgebra (or

weight space); so Γr ⊂ t∗ and Γ∨

r ⊂ t. Then the W action on these lattices is generated

by reflections σk and σ∨

k associated to each simple root αk, k = 1, . . . , r, whose actions

are given in (A.6), so σk ∈ W acts on Λ = Γ∨

r ⊕ Γr as σ
∨

k ⊕ σk.

Invariance of the Dirac pairing is the condition that

Bij := J(αi, α
∨

j ) = J(σk(αi), σ
∨

k (α
∨

j )) for all k = 1, . . . , r. (3.2)

Using the action (A.6) then implies that

αi(α
∨

k )Bkj +Bik αk(α
∨

j ) = αi(α
∨

k )Bkk αk(α
∨

j ) (3.3)

3Here the dual (Γw)
∗ means the space of linear maps of Γw to Z, and should not be confused with

the notion of “dual” with respect to the Dirac pairing used in (2.3).
4Some Weyl groups have non-trivial outer automorphisms so one might worry that there are in-

equivalent choices of how the electric and magnetic Weyl actions are put into correspondence. Weyl

groups are comprised of rotations and reflections with respect to the Killing metric on the weight

space, which can be characterized as the elements having positive and negative determinants, respec-

tively, when realized as matrices in some basis. Thus the dual of reflections are also reflections. All

automorphisms of Weyl groups which preserve the set of reflections are either inner or are Dynkin

diagram automorphisms [49]. In either case they are equivalent to a permutation of a basis of simple

roots, and so are equivalent up to a choice of lattice basis.
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for all i, j, k. Choosing i = j and i = k then implies that Bii = 2n for some n and for

all i, and that Bij = n αi(α
∨

j ). The Cartan matrix of g, Ag, is defined to have matrix

elements (Ag)ij = αi(α
∨

j ). The Cartan matrices of simple Lie algebras are recalled in

appendix A.

Thus invariance under the Weyl action determines the Dirac pairing up to an overall

normalization. And we have found that in a particular basis (corresponding to simple

co-roots and roots) the Dirac pairing of the N=4 sYM with (electric) gauge algebra g

is

Jg = n

(
0 (Ag)

t

−Ag 0

)
= n

(
0 Ag∨

−Ag 0

)
, n ∈ N, (3.4)

since Ag∨ = (Ag)
t, and n is a non-zero integer because of the integrality of the Dirac

pairing and the fact that the entries of the Cartan matrix have no common divisor.

(The sign of Jg is conventional.)

The normalization can be determined by constructing electrically and magnetically

charged states at weak coupling (i.e., semiclassically) with minimum non-zero Dirac

pairing. In the case of Yang-Mills theory with adjoint matter the Dirac pairing between

the W-boson and ’t Hooft-Polyakov monopole corresponding to an su(2) subalgebra

associated to a root is 2 in the units used here [38, 50, 51]. This implies that n = 1 in

(3.4), since diagonal elements of Ag are 2.

This result also agrees with that found from the BPS quiver description of the BPS

spectrum as reported in [12].5

With the Dirac pairing in hand, we now determine its invariant factors — the di in

(2.1) and (2.2) — that invariantly characterize it. One can determine them by direct

computation, as outlined in appendix B. They are simply the diagonal elements of the

Smith normal form of the Cartan matrix, which are

g d1 d2 · · · dr−2 dr−1 dr
su(r+1) r ≥ 1 1 1 · · · 1 1 r+1

so(2r+1) r ≥ 1 1 1 · · · 1 1 2

sp(2r) r ≥ 1 1 1 · · · 1 1 2

so(2r) r ≥ 3 odd 1 1 · · · 1 1 4

so(2r) r ≥ 2 even 1 1 · · · 1 2 2

Er r = 6, 7, 8 1 1 · · · 1 1 9−r

F4 1 1 · · · 1 1 1

G2 1 1 · · · 1 1 1

(3.5)

5The Dirac pairing shown there has the form J =
(

A−A
t
A

t

−A 0

)
which is related to (3.4) by a change

of lattice basis by the r × r block GL(2r,Z) matrix ( 1 0
1 1

).
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Note that the only Dirac pairings which are principal are those of the E8, F4, and G2

gauge theories. By the structure theorem (see appendix B) which ensures the existence

and uniqueness of the canonical symplectic structure (2.1) with invariant factors satis-

fying the divisibility conditions (2.2), and by the fact that from (3.4) detAg =
∏

i di,

the determinants of the Cartan matrices, listed in appendix A, completely determine

the invariant factors listed in (3.5) without further computation except in the cases of

g = su(r+1) for those r+1 not square-free and of so(2r). We determined these last two

cases by direct computation for r < 20, but have not worked out a proof for all r.

As noted in the last section, the number of inequivalent line lattices following from

these Dirac pairings should equal the number of different global structures for these

Yang-Mills theories as computed in [1]. This equality follows from the observation

that ⊕r
i=1Zdi in (3.5) is the center of the simply connected Lie group of g, and from

the connection between the counting of maximal Dirac-local symplectic sublattices of

the Dirac-dual lattice and the counting of maximal Dirac-local subgroups of the defect

1-form group. In appendix C we do the sublattice counting directly, verifying the

equality.

4 Comparison to CB geometry constructions

We now discuss how non-principal Dirac pairing on the charge lattice and the choice

of line lattice appear in the Coulomb branch geometry of N=2 field theories.

The Coulomb branch C — the moduli space of Coulomb vacua — is a special Kähler

(SK) space [10, 11]. The SK structure on a rank-r Coulomb branch can be expressed in

terms of a family of rank-r abelian varieties Xu, u ∈ C, varying holomorphically over C.

Xu often appears as a sub-variety of the Jacobian variety of the Seiberg-Witten curve

Σu in terms of which some SK geometries are written; see, e.g., [10, 52] and references

therein. The abelian varieties carry a choice of polarization, which can be thought of as

a choice of integral symplectic pairing P : ΛX×ΛX → Z on their lattice of homology 1-

cycles ΛX := H1(Xu,Z) ≃ Z2r. P is the pairing induced by the intersection pairing on

homology 1-cycles on the Seiberg-Witten curve. We will refer to ΛX as the homology

lattice and P as its polarization which should not be confused with the charge and

line lattice and their Dirac pairings. In fact our focus will be on understanding the

relationship among these objects.

The main conclusion is that the homology lattice and polarization appearing in the

SK structure of the Coulomb branch need not coincide with the charge lattice and Dirac

pairing of the field theory. Indeed, there is a discrete set of closely-related SK structures

compatible with a given Coulomb branch Kähler geometry, in which (homology lattice,

polarization) can take values ranging from the (charge lattice, Dirac pairing) to various
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(line lattices, principal pairings) as well as intermediate possibilities. This choice of SK

structure can thus be used to encode a choice of global structure of the field theory.

We illustrate this in the context of N= 4 sYM theories. Specifically, we exam-

ine some examples of Coulomb branch geometries of N=2∗ theories appearing in the

literature and show how to determine how their homology lattices and polarizations

are related to the field theory charge lattices and Dirac pairings. These cases have

an exactly marginal coupling and so S-duality groups related to the topology of their

conformal manifolds. We discuss how the S-duality group visible from the Coulomb

branch geometry is related to that of the field theory.

4.1 Review of N = 4 moduli space geometry

The moduli space of N=4 sYM with gauge algebra g is the flat orbifold geometry [53]:

Mg ≡ C3r/Wg. (4.1)

Here σk ∈ Wg acts as σk : ~z ⊗ µ 7→ ~z ⊗ σk(µ) where ~z ⊗ µ ∈ C3 ⊗R t∗ ≃ C3r with

t ⊂ g is a Cartan subalgebra and the σk action on t∗ given by (A.6). Choosing an

N=2 ⊂ N=4 subalgebra, the associated Coulomb branch “slice”, Cg, is the orbifold

Cg
.
= Cr/Wg where σ ∈ Wg acts on Cr ≃ C⊗Rt

∗ as above. The complex scaling action of

the spontaneously broken scale plus R-symmetries is diagonalized by a (any) algebraic

basis of Weyl-invariant polynomials in the complex coordinates on Cr, {u1, . . . , ur},

whose degrees are the exponents plus one of the Weyl group.6 Since Weyl groups act as

(real) complex reflection groups on Cr, the Chevalley-Shepherd-Todd theorem [32, 55]

implies that Cg ≃ Cr ∋ (u1, . . . , ur) as a complex space.

This metric and complex structure by themselves do not specify the SK geometry

on Cg. An SK structure on Cg can be specified by choosing a holomorphic section, s —

the “special section” — of a flat rank 2r complex vector bundle over Cg with structure

group SpP (2r,Z) [11, 31, 56]. Its fibers are the complexification of the (linearly) dual

homology lattice, C ⊗Z Λ∗

X ≃ C2r, so inherit a constant symplectic form from the

polarization P of ΛX . s satisfies the integrability condition J(ds ∧, ds) = 0 where d is the

exterior derivative on Cg, and the (positive) metric on Cg is given by ds2 = iJ(ds, ds). In

the N=4 case the components of s are locally flat coordinates on Cg which vanish at the

origin (the conformal vacuum) [31, 56]. The physical significance of the special section

is that the dual pairing Λ∗

X ×ΛX → Z induces the central charge map Z : Cg×ΛX → C

where Z(u, q) := s(u)(q) and whose norm is the BPS mass of a state of EM charge q

in the vacuum u.

6The exponents of Weyl group Wg are the r integers 0 < ei < h with gcd(ei, h) = 1 where h is the

Coxeter number of g [54].
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Choose a basis (mi, e
i), i = 1, . . . , r, of ΛX such that the ei and mi span lagrangian

sublattices with respect to P . Write P in this basis as the non-degenerate integral

2r × 2r matrix

P =

(
−Bt

B

)
, (4.2)

where Bi
j := P (ei, mj). In the dual basis (mi, ei) of Λ∗

X (so mi(mj) = δij , m
i(ej) =

0, etc.) the special section is s := aDi m
i + aiei, and P (ei, m

j) = −(B−1)ji so the

induced pairing, P ∗ = −P−1, is the inverse transpose of (4.2) in the dual basis. The

ai are “special coordinates” and the aDi are “dual special coordinates”. The metric is

ds2 = 2Im(daDi (B
−1)i jda

j). Flatness of ds2 and the special coordinates, and the SK

integrability of s then imply that aDj = τjka
k, where τ is a constant complex r × r

matrix satisfying τB = (τB)t. Positivity of the metric implies Im(τB) > 0. These also

imply that aD and a are separately good holomorphic coordinates on the regular points

of Cg.

In terms of the holomorphic family Xu of abelian varieties over Cg mentioned above,

ΛX and P are its homology lattice and polarization, and Bτ is its complex modulus.

A monodromy M ∈ SpP (2r,Z) of the EM charge lattice satisfies MJM t = J ,

which implies that M−tP ∗M−1 = P ∗, so SpP ∗(2r,Z) = SpP (2r,Z). We define the dual

EM monodromy by M∗ := M−t. Upon continuing the special section along a closed

path γ in Cg \ {singular locus}, it can suffer a monodromy M∗(γ) ∈ SpP ∗(2r,Z). This

defines a monodromy map µ∗ : π1(Cg \ {singular locus}) → SpP ∗(2r,Z), and we call

imµ∗ ⊂ SpP ∗(2r,Z) the EM duality group of the theory in question. Constancy of τjk
then implies it is fixed by the EM duality group, so m∗τ + n∗ = τ(p∗τ + q∗) for all(
m∗ n∗

p∗ q∗

)
∈ imµ∗.

In the N=4 case where the Coulomb branch is an orbifold by the Weyl group

action, the EM duality group is the image of the Weyl group in SpP ∗(2r,Z) given by

its action on the special section. Furthermore, in this case τ is only by EM duality

invariant up to an overall complex constant which is the exactly marginal coupling

constant of the N=4 sYM theory.

4.2 Connection between special Kähler structures and Dirac pairing

To start with, let us choose as special coordinates ak = α∗

k where α∗

k are is the dual

basis of simple roots on C⊗ t∗. (Dual simple roots are linearly independent real linear

functions on t∗, so extend by linearity to good complex coordinates in neighborhoods of

Cg away from orbifold fixed points.) This corresponds to a choice of “electric” lagrangian

sublattice basis {ek} of ΛX with ek = αk, the simple roots. Thus we are choosing the

electric homology sublattice to be the root lattice. Likewise we can choose as dual
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special coordinates aDk = (α∨

k )
∗ (the dual basis of the simple co-roots), corresponding

to the choice of “magnetic” lagrangian sublattice basis the simple co-roots {mk = α∨

k },

so the magnetic homology sublattice is the co-root lattice. In this case it is clear that

we have chosen the SK homology lattice to be

ΛX = Γ∨

r ⊕ Γr, (4.3)

and so it coincides with the charge lattice (3.1) of the field theory.

A Weyl element σ ∈ Wg acts on the electric charge lattice in this simple root basis

by multiplication by an integral r× r matrix which we denote by the same symbol, σ.

Denote the matrix representation of the Weyl group element σ ∈ Wg on this basis by

σ∨, as in (A.6). Then Mσ := ( σ∨ 0
0 σ ) ∈ GL(2r,Z) for σ ∈ Wg preserve the symplectic

form P (4.2) with B = −Ag, the Cartan matrix of g. This is just a restatement of the

calculation of the last section around equations (3.2) and (3.3). Thus the monodromies

Mσ are in SpP (2r,Z), so the above choices of special and dual special coordinates give

a consistent SK structure on Cg with polarization P , and this polarization coincides

with Dirac pairing (3.4) of the field theory.

But it is also clear that other, inequivalent, SK structures can be put on the N=4

Coulomb branch orbifold. The main consistency requirement is that the special section

be chosen so that there is a basis in which its monodromies are given by integer matrices

which preserve an integer symplectic form. Since the monodromies are induced by

the action of the orbifolding Weyl group, Wg, such special sections will be related to

sublattices of the weight plus co-weight lattice Γ∨

w⊕Γw for g which are preserved under

Wg. As reviewed in appendix A, for Γw these sublattices are the group lattices, which

are in 1-to-1 correspondence with the different possible subgroups of the center of the

simply connected gauge group; and similarly for Γ∨

w as summarized in (A.1).

So, for example, one can take special coordinates ak = α∗

k, the dual simple roots,

as in the previous example, but choose the dual special coordinates differently to be

aDk = (ω∨

k )
∗, where ωk are a basis of fundamental co-weights. This corresponds to

choosing the homology lattice

ΛX = Γ∨

w ⊕ Γr. (4.4)

From the definition (A.6) of the Weyl group actions it follows that if σi is the ma-

trix representation of the σi action in the simple root basis, then σ∨

i acts in a funda-

mental co-weight basis as matrices (σi)
−t. Since the generating σi ∈ Wg are reflec-

tions, (σi)
−t = (σi)

t, making their integrality apparent. Thus the monodromy matrices

Mσ :=
(
σ−t 0
0 σ

)
∈ GL(2r,Z),and, furthermore, it follows immediately that they preserve

– 14 –



a principal polarization

P =

(
0 1

−1 0

)
. (4.5)

This gives an example of an SK structure on Cg in which the homology lattice is not

the charge lattice. Since the homology lattice is principally polarized, and since the

charge lattice (4.3) is a sublattice of (4.4), it is natural to guess that this SK structure

corresponds to a choice of line lattice, and so to a choice of global structure of the field

theory.

Indeed, it is easy to see that (4.4) and (4.5) correspond to the global structure

(G̃/Z(G̃))0 in the notation of [1], where the electric gauge group is the “adjoint” group

with trivial center, and the magnetic gauge group is the simply-connected group G̃∨.

This follows because Γr and Γ∨

w are the group lattices of these two groups. The zero

subscript refers to the fact that the polarization (4.5) on ΛX is in block-skew form. It is

not hard to see that there are other SK structures in which, for instance, the dual special

coordinates are the fundamental co-weights shifted by multiples of weights according

to their charges under the center Z(G̃) of the gauge group. This effectively shifts the

generating monodromy matrices Mσ to block triangular form which preserve a principal

but non-block-skew polarization and which correspond to global forms (G̃/Z(G̃))n with

0 6= n ∈ Z(G̃).

SK structures corresponding to the other global forms can be constructed along

similar lines. They correspond to choices of Weyl-invariant sublattices of Γ∨

w ⊕ Γw

which preserve a principal integral symplectic pairing. As was discussed in the last two

sections and in appendix C, this is equivalent to the classification of global forms given

in [1].

Note that it is also possible to construct SK structures “intermediate” to the princi-

pally polarized line lattices and the ones with the physical Dirac pairing on the charge

lattice. The homology lattices which occur in these cases could be interpreted as

“non-maximal” choices of mutually local line operators. Their polarizations will be

non-principal, and will have invariant factors which are divisors of those of the Dirac

pairing.

Finally, N=4 theories have a 1-dimensional conformal manifold and an associated

S-duality group. As an abstract group, the S-duality group is the fundamental group

of the conformal manifold in the orbifold sense. Orbifold fixed points on the conformal

manifold can be detected as those values of the coupling where the effective theories

on the Coulomb branch have an enhanced finite global symmetry group. If we take the

coupling (a coordinate on the conformal manifold) to be τ in the complex upper half

plane, then the conformal manifolds for N=4 sYM theories are fundamental domains
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of the möbius action of a finite-index subgroup of SL(2,Z) (or of a closely related group

in the cases of g = G2 or F4 [57]).

In general, the S-duality group cannot be unambiguously reconstructed from the

SK geometry of the Coulomb branch. The reason is simply that the Coulomb branch

geometry only captures partial information about the field theory and so might present

two Coulomb branch vacua with distinct physics as having isomorphic SK geometries.

So, if we try to reconstruct the conformal manifold by identifying values of τ in the

upper half plane with SK-isometric Coulomb branches, we will generally make mistaken

identifications, leading to too small a conformal manifold. Equivalently this will give

too large an S-duality group, i.e., one which is a smaller-index subgroup of SL(2,Z)

than the physical S-duality group.

The choice of global structure (or choice of line lattice) of a field theory is an

important datum distinguishing them. As emphasized and explored in [1], the global

structures of a sYM theory with given gauge algebra g form orbits under S-duality

transformations. The S-duality group and conformal manifold thus depend on the

global structure orbit. For instance, if a given global structure formed a single orbit

by itself, the S-duality group would be the full SL(2,Z) and the conformal manifold

would be a punctured sphere with a Z2 and a Z3 orbifold point. (The puncture is

the weak-coupling limit.) An orbit involving more global structures will give a smaller

S-duality group and a conformal manifold with a different set of orbifold points and

punctures.

Since we have seen how to encode the choice of global structure in a choice of SK

structure on the Coulomb branch, it follows that the S-duality groups and conformal

manifold topologies that can be accessed from the Coulomb branch geometries with

principally polarized homotopy lattices should correspond to the orbits found in [1].

The following subsections discuss from this point of view examples of Coulomb branch

geometries for N=2∗ theories that have appeared in the literature.

4.3 N=2∗ Coulomb branch geometries

We now discuss N=2∗ sYM Coulomb branch geometries from the perspective of under-

standing whether their homology lattices are charge lattices, line lattices, or something

intermediate. These geometries have been given in terms of Seiberg-Witten curves de-

rived as spectral curves of integrable systems for g = su(N) in [10] and for other simple

g in [58, 59].

Naively, the Jacobian variety of a Riemann surface is principally polarized by its

intersection pairing, and so one might think that the homology lattice derived from a

Seiberg-Witten curve (family of Riemann surfaces) will be principally polarized. By

the dictionary worked out in the last subsection, this would seem to imply that the

– 16 –



homology lattice of these SK geometries correspond to line lattices. But this is not

necessarily the case. The Seiberg-Witten curves which appear in various constructions

often have genus greater than the rank of the Coulomb branch. As a result their

homology lattices have too large a rank to be interpreted directly as either charge or

line lattices. Instead, an extra condition picking out an appropriate-rank sublattice of

the homology lattice must be imposed. The principal polarization of homology lattice,

restricted to this sublattice, need no longer be principal.

For example, the integrable system [10], IIA/M theory brane [60], and S-class AN−1

[61, 62] constructions of the N=4 su(N) sYM theory all describe a Seiberg-Witten

curve, ΣN , which is a bouquet of N tori all of complex modulus τ and all identified

at a marked point. This degenerate genus-N curve is interpreted as the SW curve of

the u(N) theory, whose Weyl group, SN , acts by permuting the tori in ΣN . The rank

of the Coulomb branch is N−1, so the homology lattice of SN has rank 2 greater than

what is desired.

Indeed, the lattice ΛX of homology 1-cycles on ΣN is interpreted as the lattice of

(possible) charges for the u(N) theory and its intersection form is the Dirac pairing.

The basis {mi, e
i, i = 1, . . . , N} of the homology lattice, where {mi, e

i} is a canonical

basis of the ith torus, has intersection form P (mi, e
j) = δji .

Now restrict to the sublattice of the homology lattice which corresponds to states

neutral under the central u(1) factor of the u(N) gauge algebra, thereby identifying

the effective homology lattice of the su(N) gauge theory SW curve. We do this by

identifying the rank-2(N − 1) symplectic sublattice of the rank-2N homology lattice

which is invariant under the Weyl group action.

An element π ∈ SN of the Weyl group acts as π : {mi , e
i} 7→ {mπ(i) , e

π(i)}. De-

compose R2N = R ⊗Z ΛX into invariant subspaces R ⊕ R ⊕ RN−1 ⊕ RN−1 under this

action, where the first two factors are generated by
∑N

i=1mi and
∑N

i=1 e
i, respectively,

and the second two factors have bases {mi−mi+1} and {ei−ei+1} for i = 1, . . . , N−1,

respectively. Though this decomposition is not unique, if we require that the decom-

position is into symplectic subspaces with respect to the Dirac pairing, then we do

get a unique decomposition R2N ≃ R2 ⊕ R2(N−1) where the R2(N−1) factor is the sum

of the last two factors of the previous decomposition. Then the rank-2(N−1) sublat-

tice invariant under the Weyl group action is Λsu(N) := ΛX ∩ R2(N−1) which has basis

{mi−mi+1 , e
i−ei+1} for i = 1, 2, . . . , N−1. The pairing induced on the su(N) sublat-

tice from the intersection pairing on ΛX , P (mi−mi+1, e
j−ej+1) = 2δi,j − δi+1,j − δi,j+1,

is the Cartan matrix for su(N).

Thus the homology (sub)lattice and (induced) polarization of this SW curve are

precisely those of the su(N) sYM charge lattice and Dirac pairing. As a result, these

SK structures do not encode any choice of global structure of the field theory. We
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therefore expect that the S-duality group that is visible from this curve should be the

full SL(2,Z), and not one of the more refined subgroups associated to a given orbit of

line lattices described in [1]. Indeed, the SL(2,Z) S-duality of the curve is obvious from

its initial description as a bouquet of identical tori all with one marked point and the

same complex modulus.

The integrable system spectral curves for other simple Lie algebras g [59] have a

similar structure. They give Riemann surfaces whose genus is the dimension of a non-

trivial irreducible representation of the Lie algebra, so is always greater than the rank

of the Lie algebra. So it seems likely that their associated homology sublattices have

non-principal induced polarizations. It would be interesting to check whether these

coincide with the charge lattices and Dirac pairings computed in the last section.

4.4 Other curves for su(2) and su(3) N=4 sYM

In low ranks the possible SK geometries are better understood. In rank 1 a full classifi-

cation of these geometries is known [22–24], and among them there are two correspond-

ing to the su(2) N=2∗ theory. At rank 2 much less is known [63], but a second curve

— besides the one discussed in the previous subsection — describing the su(3) N=2∗

theory is known. These additional curves are precisely the ones expected to encode the

global structure of the field theory.

su(2). One curve is the N = 2 specialization of the su(N) curves described in the last

subsection. It was written directly in terms of a genus-1 Riemann surface in the original

paper [8] of Seiberg and Witten. As argued in detail in [22, 23], this curve has non-

principal homology lattice polarization with invariant factor 2. (At rank 1 the invariant

factor appears as an overall normalization of the polarization so is somewhat subtle to

identify correctly.) This coincides with the Dirac pairing on the charge lattice. And,

indeed, upon turning on the N=2∗ mass deformation, the conformal singularity on

the Coulomb branch splits into three singularities corresponding to IR free u(1) gauge

theories with massless hypermultiplets of (magnetic, electric) charges (1, 0), (1,−1),

and (0, 1). These charges span the whole homology lattice of the curve, and so show

that the homology lattice and charge lattice coincide. This is also consistent with the

S-duality group visible from this curve being the full SL(2,Z) group.

In [23] a second curve with Coulomb branch consistent with the su(2) N=2∗ theory

was constructed. The homology lattice of this curve has principal polarization, so we

expect it should be identified with the su(2) with a choice of line lattice. In fact, the

three inequivalent choices of line lattices form a single orbit under S-duality, so there

should only be a single such principally polarized SK geometry. This interpretation is

borne out by a closer comparison of the charge and homology lattices. Upon turning
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on the N=2∗ mass deformation, the conformal singularity splits into three IR free

singularities with massless hypermultiplet charges (1, 0), (1,−2) and (0, 2) which span

the charge lattice. This is an index-2 sublattice of the homology lattice, with induced

polarization with invariant factor 2. Furthermore, the S-duality group visible in this

SK structure is the index-3 subgroup Γ0(2) ⊂ SL(2,Z) generated by T 2 and TS [23].

This is the S-duality group predicted by the line lattice analysis [1].

su(3). Similarly, our analysis shows that in addition to the su(3) curve with homol-

ogy lattice equal to the charge lattice and SL(2,Z) S-duality group, there should be a

second Seiberg-Witten curve with principally polarized homology lattice corresponding

to the single S-duality orbit of line lattices of this theory. In fact, such a curve can be

constructed [64]. Despite the simplicity of the orbifold analysis given in section 4.2,

the description in terms of a Seiberg-Witten curve is quite complicated. The Coulomb

branch has complex coordinates (u, v) ∈ C2 with scaling dimensions (2, 3), respec-

tively. The curve is a family of genus-2 Riemann surfaces depending holomorphically

on these vevs and on an exactly marginal (dimensionless) coupling parameter, τ , given

in hyperelliptic form by

y2 = −
1

576(u3 − v2)

(
729(2 + τ)u6 + 972(τ − 10)u5x2 + 864u v2 x(27v + 2τx3) (4.6)

+ 144u2 v x2(27(5 + τ)v + 4(2 + τ)x3) + 108u4(27(−6 + τ)v x+ 4(10 + τ)x4)+

16v2(729v2 + 108τv x3 + 16x6)− 16u3(729v2 − 54(10 + 3τ)v x3 − 4(τ − 2)x6)
)
.

The Seiberg-Witten 1-form is

λ = (ux+ v)
dx

y
. (4.7)

It can be checked that the periods of this 1-form define a special section satisfying

the SK integrability condition, and give rise to metric non-analyticities along a single

irreducible u3 = v2 subvariety of the Coulomb branch, matching the geometry expected

from the orbifold construction. Since it is given as a family of genus-2 curves, its

homology lattice is principally polarized. However, the N=2∗ mass-deformed version

of this curve is not known, so we cannot directly verify that the charge lattice is an

index-3 sublattice of the homology lattice.
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A Properties of simple Lie algebras and groups

We set notation and recall some basic facts about weight and co-weight lattices and

Cartan matrices of simple Lie algebras, g.

For each g there is a simply-connected compact Lie group, G̃. Other compact Lie

groups G with Lie algebra g, are given by quotients of G̃ by various subgroups of its

center, Z(G̃). Only those irreducible representations of g which represent Z(G̃)/Z(G)

by the identity exponentiate to give representations of a given global form G.

A Cartan subalgebra t ⊂ g is a maximal commuting subspace of g and is always of

dimension r = rank(g). In a given irrep R, the representation matrices of h ∈ t can be

simultaneously diagonalized giving vectors λ ∈ t∗ of simultaneous eigenvalues so that

λ(h) is an eigenvalue of R(h). The set {λ} are the weights of R, and their integral span

generates a lattice ΓR ⊂ t∗, the weight lattice of R. Here t∗ is the real linear dual of

t (i.e., the space of linear maps from t to R) and Γ∗ will denote the lattice integrally

dual to Γ (i.e., Γ is the space of linear maps from Γ∗ to Z).

The roots, {α}, are the non-zero weights of the adjoint representation of g. One can

choose (not uniquely) a subset of r = rank(g) simple roots, {αi, i = 1, . . . , r}, which

are a basis of Γr and which separate the roots into two disjoint sets: the positive roots,

which are those roots which can be written as non-negative integer linear combinations

of the simple roots; and the negative roots, which are the negatives of the positive

roots.

The group lattice, ΓG, is defined to be the union of the weight lattices for all irreps

R of G, ΓG := ∪RΓR, (though, in fact, the union of only a finite number of irreps

suffices). The smallest (coarsest) possible group lattice is the root lattice, Γr, which is

the weight lattice of the adjoint irrep of g. It occurs as the group lattice of the group

G̃/Z(G̃) which has trivial center. The largest (finest) possible lattice is the weight

lattice of g, Γw, and is the group lattice of G̃.

From these definitions it follows that the group lattice is intermediate between the

root and weight lattices of g and determines the center of G by

Γr ⊂ ΓG ⊂ Γw ⊂ t∗

l ∗ l ∗ l ∗

t ⊃ Γ∨

w ⊃ Γ∗

G ⊃ Γ∨

r

with Z(G) = (ΓG/Γr)
∗ = Γ∨

w/Γ
∗

G, (A.1)

where the lattices connected by vertical arrows are integrally dual. Γ∨

w and Γ∨

r are the

co-weight and co-root lattices, respectively, also called magnetic lattices. The Goddard-
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Nuyts-Olive (GNO) or Langlands dual Lie algebra, g∨, satisfies Γw(g) ≃ Γ∨

w(g
∨) and

Γr(g) ≃ Γ∨

r (g
∨) where g∨ = g for g = su(n), so(2n), En, F4, G2, but sp(2n)

∨ = so(2n+1)

and so(2n + 1)∨ = sp(2n).

In addition to its linear structure, t comes with a positive definite real inner product

inherited from the Killing form on g: (e, f) := tr(ad(e)ad(f)) for e, f ∈ g. Upon re-

stricting to t, one finds that (µ, ν) =
∑

α∈roots α(µ)α(ν) for µ, ν ∈ t. This inner product

is defined up to a single overall normalization for simple g. Choosing a normalization,

the inner product can be used to select a canonical identification between t and its dual

t∗. In particular, to each λ ∈ t∗, define λ∗ ∈ t by (λ∗, φ) := λ(φ) ∀φ ∈ t. Likewise, t∗

inherits an inner product from t via (λ, µ) := (λ∗, µ∗) = λ(µ∗).

Co-roots, α∨, are defined by

α∨ :=
2α∗

(α, α)
, α ∈ roots. (A.2)

When α and β are roots, then β(α∨) are integers for all simple Lie algebras.

Aij := αi(α
∨

j ), αi ∈ simple roots, (A.3)

are the elements of the r×r integer Cartan matrix of the algebra. The Cartan matrices

are

Asu(r+1) =




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2 −1

−1 2




, AG2
=

(
2 −3

−1 2

)
, (A.4)

Aso(2r+1) = At
sp(2r) =




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2 −2

−1 2




, AF4
=




2 −1

−1 2 −2

−1 2 −1

−1 2


 ,
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Aso(2r) =




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2 −1 −1

−1 2

−1 2




, AEr
=




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1 −1

−1 2 −1

−1 2

−1 2




,

and

detAsu(r+1) = r + 1, detAso(2r+1) = detAsp(2r) = 2, detAso(2r) = 4,

detAEr
= 9− r, detAF4

= detG2 = 1. (A.5)

In general detA = |Γw/Γr|, the index of the root lattice as a sublattice of the weight

lattice. Also, Ag∨ = (Ag)
t.

The charge lattices in (A.1) can be computed as follows. The root lattice, Γr,

is the integral span of the simple roots {αi}. The co-root lattice, Γ∨

r , is spanned

by the simple co-roots {α∨

i }. The weight lattice, Γw is spanned by the fundamental

weights {ωi} defined by ωi(α
∨

j ) = δij . Finally the co-weight lattice, Γ∨

w, is spanned

by the fundamental co-weights {ω∨

i } defined by αi(ω
∨

j ) = δij , or, equivalently, by

ω∨

i = 2ω∗

i /(αi, αi).

The Weyl group, W (g), is the group of orthogonal transformations of t generated

by reflections σi for each simple root αi which fix the hyperplane αi(φ) = 0 in t and

act as

σ∨

i (φ) := φ− αi(φ)α
∨

i , for φ ∈ t,

σi(µ) := µ− µ(α∨

i )αi, for µ ∈ t∗. (A.6)

The action on t∗ is defined so σi(µ)(φ) = µ(σ∨

i (φ)). W permutes the roots and acts

transitively on them, and also acts transitively on the set of bases of simple roots.

B Invariant factors of a symplectic form

The structure theorem for finitely generated modules over a principal ideal domain —

see e.g., ch. IV, sec. 6 of [65] — applied to a symplectic matrix J over the integers

implies that there is a basis in which J takes the unique form (2.1) whose diagonal

entries are the invariant factors satisfying the divisibility condition (2.2). For a direct

proof in this case, see e.g., lemma on p. 305 of [66].
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The Dirac pairings we found for the N=4 sYM theories were already in the block-

skew form J =
(

0 A
−At 0

)
. In this case finding the invariant factors can be done by

putting the r × r matrix A in Smith normal form, i.e., finding P,Q ∈ GL(r,Z) such

that PAQ = D with D = diag{d1, . . . , dr} and di|di+1. Then J is put into canonical

symplectic form (2.1) by the change of basis

J →

(
P 0

0 Qt

)
J

(
P t 0

0 Q

)
. (B.1)

The Smith normal form algorithm is described in [67].

An algorithm for putting a general integral symplectic matrix (i.e., not necessarily

in block-skew form) into canonical symplectic form is described in [68]. We reproduce

it here for use in appendix C.

(0) Start with a basis of the lattice, {ai, i = 1, ..., 2r}, and reorder it, if necessary,

so that J(a1, a2) > 0. (Such an ordering always exists since J is assumed non-

degenerate.)

(1) Set dr := J(a1, a2). If dr|J(a1, ak) for all k > 2, then go to step (3).

(2) Find the smallest k for which dr ∤ J(a1, ak), and set q := [J(a1, ak)/dr] (the integer

part of the quotient). Now replace a2 → ak − qa2, and ak → a2. Go to step (1)

with this new basis.

(3) If dr|J(a2, ak) for all k > 2, then go to step (4). Find the smallest k for which

dr ∤ J(a2, ak), and set q := [J(a2, ak)/dr]. Replace a1 → ak − qa1, and ak → a1.

Go to step (1) with this new basis.

(4) Set êr := a1, m̂r := a2, and bk := ak −
1
dr
J(a1, ak)a2 +

1
dr
J(a2, ak)a1 for k > 2.

Note that J(êr, m̂r) = dr and J(êr, bk) = J(m̂r, bk) = 0. Define a reduced rank

sublattice with basis ak := bk−2 for k = 1, . . . , 2(r−1). Go to step (0) with this

new rank-(2r−2) lattice.

Since dr decreases after each step (2) and (3), eventually step (4) will be reached and the

rank of the problem will be reduced. Thus, the algorithm eventually stops, outputting

a basis {ê1, m̂1, ..., êr, m̂r} of Λ in which J is skew-diagonal with J(êi, m̂j) = diδij and

J(êi, êj) = J(m̂i, m̂j) = 0.

This basis does not guarantee that di | di+1, so does not directly determine the

invariant factors of the Dirac pairing. Applying the Smith normal form algorithm to
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the pairing matrix as in (B.1), does give a Dirac pairing in which di | di+1. In particular,

say di ∤ di+1 and set

d′i := gcd(di, di+1), d′i+1 := didi+1/ gcd(di, di+1). (B.2)

Define a new basis by replacing
(

êi
êi+1

)
→

(
α β

γ δ

)(
êi
êi+1

)
,

(
m̂i

m̂i+1

)
→

(
1 1

βγ αδ

)(
m̂i

m̂i+1

)
, (B.3)

with α, β, γ, and δ integers satisfying

αdi + βdi+1 = d′i, γ = −di+1/d
′

i, δ = di/d
′

i, (B.4)

which exist by the definition of d′i and which ensure that the basis change matrices are

invertible over the integers. Then in the new basis J is skew diagonal with new skew-

eigenvalues d′i and d′i+1 given by (B.2). By successive application of the substitutions

(B.2) applied to pairs of skew eigenvalues, they are eventually brought to the invariant

factor form in which di | di+1, at which point the (B.2) substitution no longer changes

the eigenvalues.

C Maximal symplectic sublattices of ΛJ

Given a Dirac pairing in canonical form

J =




drǫ

dr−1ǫ
. . .

d1ǫ


 , ǫ :=

(
0 1
−1 0

)
, (C.1)

with respect to a basis 〈e1, . . . , e2r〉 of a rank-2r charge lattice Λ, the dual lattice ΛJ

has basis 〈e∗1, . . . , e
∗

2r〉 where e∗2i−1 = d−1
i e2i−1 and e∗2i = d−1

i e2i for i = 1, . . . , r. With

respect to this basis the induced pairing is

J∗ =




d−1
r ǫ

d−1
r−1ǫ

. . .

d−1
1 ǫ


 . (C.2)

Note that we have re-ordered the basis relative to the one used in (2.1) both by inter-

lacing the electric and magnetic basis elements, and by reversing their overall ordering

so that the invariant factors are ordered from largest to smallest. This re-ordering is

convenient for making the following argument.
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Characterization of sublattices. We want to find the maximal sublattices L ⊂ ΛJ

on which the induced Dirac pairing is integral. Such a maximal sublattice is a full-rank

sublattice of index |ΛJ/L| = detD. An elementary result — see Ch. I, Thm. I and

Corr. 1 of [69] — states that distinct full-rank sublattices L ⊂ ΛJ of index detD are

in 1-to-1 correspondence with bases 〈ê1, . . . , ê2r〉 of the form




ê1
ê2
...

ê2r


 = V




e∗1
e∗2
...

e∗2r


 , V =




v11
v21 v22
...

. . .

v2r,1 v2r,2 · · · v2r,2r


 , (C.3)

where the entries of the lower triangular matrix V satisfy

0 ≤ vab ∈ Z,

2r∏

a=1

vaa = detD, and vba < vaa for b > a, (C.4)

and every distinct such V corresponds to a distinct sublattice. We refer to such V ’s as

sublattice basis matrices.

The induced Dirac pairing on L in this basis is given by Ĵ = V J∗V t. Split the

pairing and sublattice basis matrices into blocks as

J∗ =

(
J∗

2s

J∗

2r−2s

)
, V =

(
V2s

W V2r−2s

)
, (C.5)

where the subscripts denote the sizes of the square blocks. Then

Ĵ =

(
V2sJ

∗

2sV
t
2s V2sJ

∗

2sW
t

WJ∗

2sV
t
2s WJ∗

2sW
t+V2r−2sJ

∗

2r−2sV
t
2r−2s

)
. (C.6)

A necessary condition for L to be a line lattice is that its induced Dirac pairing, Ĵ ,

is integral, and so in particular we must have Z ∋ det(V2sJ
∗

2sV
t
2s) = (det V2s · PfJ∗

2s)
2,

and so det V2s · PfJ∗

2s ∈ Z. Since det V2s =
∏2s

a=1 vaa (since it is lower triangular) and

PfJ∗

2s =
∏r

i=r−s+1 d
−1
i , we learn that a necessary condition for V to describe a sublattice

with integral induced pairing is that

( r∏

i=r−s+1

di

)
|

( 2s∏

a=1

vaa

)
(C.7)

for all s = 1, . . . , r.
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Reduction in rank when some invariant factors are 1. Now consider the case

that di = 1 for i ≤ r− s. This, together with (C.7) and the constraint from (C.4) that∏2r
a=1 vaa =

∏r

i=1 di, implies that vaa = 1 for a > 2s. The constraints (C.4) then imply

vab = 0 for b > a > 2s, i.e., that

V2r−2s = I2r−2s (C.8)

in (C.5), where I2r−2s is the 2r−2s× 2r−2s identity matrix. Furthermore, the J∗

2r−2s

symplectic block defined in (C.5) is integral by virtue of the assumption that di = 1

for i ≤ r− s. The condition that Ĵ is integral together with its decomposition in (C.6)

then implies that both WJ∗

2r−2sW
t and V2sJ

∗

2sW
t are integral. Define the vectors




ê1
...

ê2s
ŵ2s+1

...

ŵ2r




:=




|

V2s 0

W 0







e∗1
...

e∗2s
e∗2s+1
...

e∗2r




. (C.9)

The first 2s are L basis vectors already defined in (C.3), and the remaining ones, the ŵk,

are vectors in ΛJ . The integrality of V2sJ
∗

2sW
t and WJ∗

2r−2sW
t can then be interpreted

as

J∗(êa, ŵk) ∈ Z and J∗(ŵk, ŵℓ) ∈ Z. (C.10)

Since L is defined to be a maximal sublattice of ΛJ such that the induced Dirac pairing

is integral, (C.10) implies that the vectors ŵk are in L. They must therefore be able to

be written as integral linear combinations of the êa basis vectors,

ŵk =
2s∑

a=1

wk,aêa, k > 2s, (C.11)

for some integers wk,a. From (C.5) and (C.9), ŵk =
∑2s

b=1 vk,be
∗

b and êa =
∑a

b=1 va,be
∗

b ,

so by (C.11)

2s∑

b=1

vk,be
∗

b =

2s∑

a=1

a∑

b=1

wk,ava,be
∗

b =

2s∑

b=1

(
2s∑

a=b

wk,ava,b

)
e∗b , k > 2s. (C.12)

The e∗2s term implies

vk,2s = wk,2sv2s,2s, k > 2s. (C.13)
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But the sublattice basis matrix condition (C.4) implies 0 ≤ vk,2s < v2s,2s so the only

integer solution to (C.13) is wk,2s = 0. Using this in (C.12) then gives a similar 1-term

equation for the e∗2s−1 term setting wk,2s−1 = 0, and repeating this leads to

W = 0. (C.14)

Using (C.8) and (C.14) in (C.5), we have shown that the sublattice basis must be

given by a V of the form

V =

(
V ′

I2r−2s

)
, (C.15)

and V ′ is a sublattice basis matrix of reduced size. Thus the determination of the

distinct maximal line lattices as sublattices of ΛJ can be reduced to listing the possible

2s× 2s matrices of the form (C.3) satisfying (C.4).

Application to counting sYM line lattices. We now apply this to the determi-

nation of the maximal line lattices for the N=4 sYM theories. The invariant factors

of their Dirac pairings, found above and listed in (3.5), all have s = 1, except for those

with gauge Lie algebra g = so(4n) which have or s = 2. So we need only find sublattice

matrices V of size 2× 2 or 4× 4.

For the s = 1 cases the invariant factors are {1, . . . , 1, dr}. Then we need to classify

2× 2 V ′’s satisfying the constraints in (C.4) and which give an integral induced Dirac

pairing. Thus

V ′ =

(
v11 0

v21 v22

)
, with v11v22 = dr and 0 ≤ v21 < v11, (C.16)

where the vab are all non-negative integers. The induced pairing on this block is

J ′ =
1

dr
V ′ǫ(V ′)t =

v11 v22
dr

ǫ = ǫ, (C.17)

which is therefore integral for all V ′ in (C.16). One counts the possible such V ′ as in

[70, 71], giving the number Nline of distinct line lattices:

Nline =
∏

k

pnk+1
k − 1

pk − 1
, where dr =

∏

k

pnk

k is its prime decomposition. (C.18)

In particular, for low values of dr we have

dr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·

Nline 1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 · · ·
. (C.19)
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For the s = 2 cases the invariant factors are {1, . . . , 1, 2, 2}. Then we need only

classify 4× 4 V ’s satisfying the constraints in (C.4) and (C.7), i.e.,

V ′ =




v11
v21 v22
v31 v32 v33
v41 v42 v43 v44


 , 0 ≤ vba < vaa ∀b 6= a,

with v11v22v33v44 = 4 and 2 | v11v22. (C.20)

We split these into 7 cases according to the possible solutions for the diagonal elements:

V ′

I =




2

v21 2

v31 v32 1

v41 v42 0 1


 , V ′

II =




2

v21 1

v31 0 2

v41 0 v43 1


 , V ′

III =




2

v21 1

v31 0 1

v41 0 0 2


 ,

V ′

IV =




1

0 2

0 v32 2

0 v42 v43 1


 , V ′

V =




1

0 2

0 v32 1

0 v42 0 2


 , V ′

V I =




4

v21 1

v31 0 1

v41 0 0 1


 ,

V ′

V II =




1

0 4

0 v32 1

0 v42 0 1


 , (C.21)

where the undetermined vab = 0 or 1. Now compute the induced sublattice pairings,

Ĵ = V ′J∗(V ′)t and demand that all entries are integers. This eliminates cases V I and

V II and constrains the allowed values of the vab in the other cases to

V ′

Ia =




2

0 2

v31 1 1

1 v42 0 1


 , with v31v42 = 0, (3 lattices) (C.22)

V ′

Ib =




2

0 2

0 v32 1

v41 0 0 1


 , with v32v41 = 0, (3 lattices)

V ′

II =




2

v21 1

0 0 2

0 0 v43 1


 , (4 lattices)
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V ′

III =




2

v21 1

0 0 1

0 0 0 2


 , (2 lattices)

V ′

IV =




1

0 2

0 0 2

0 0 v43 1


 , (2 lattices)

V ′

V =




1

0 2

0 0 1

0 0 0 2


 , (1 lattice)

for a total of 15 maximal symplectic sublattices. The induced pairings are

J ′

Ia =




0 2 1 v42
−2 0 −v31 −1

−1 v31 0 0

−v42 1 0 0


 , J ′

Ib =




0 2 v32 1

−2 0 −1 −v41
−v32 1 0 0

−1 v41 0 0


 , J ′

II-V =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 ,

which are manifestly principal for cases II-V . They are also principal for cases Ia

and Ib — they must be by construction — as can be checked by noting that their

determinants are 1 or by computing the invariant factors as outlined in appendix B.
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