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Abstract

In this paper we extend upon the work done in Buckley et al. (2008) and Herron
and Poranee (2013) where metric space inversions and sphericalizations are investigated
using the quasihyperbolic metric. Here, we present an analogous study of metric space
inversions and sphericalizations, but this time using the Ferrand metric. Using what
we find for the Ferrand metric we also present new estimates for the stretching of the
quasihyperbolic metric when it is inverted. We also present some methods of calculating
or estimating the Ferrand metric using properties of the metric space itself.

1 Introduction and Definitions

In this section I will go through a brief introduction to inversions, sphericalizations, the

Ferrand metric, and Appolonian objects.

An inversion of a metric space (X, d) through the point o is the metric space (Xo =

X\{o}, do) where do is defined through the following equations.

io(x, y) ≡ d(x, y)

d(x, o)d(y, o)
(1)

do(x, y) ≡ inf{Σk
i=1io(xi, xi−1 : x = x0, ..., xk = y ∈ Xo} (2)

where the infimum is taken over all chains xo, ..., xk. This new distance function can be

pictured as taking the space X and inverting it through the point o so that the distance

between two points that are far away from o is small, but the distance between two points

which are close to o is large (and increasingly large the closer you get to o). From these

definitions, one can show that ∀x, y ∈ X
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1

4
io(x, y) ≤ do(x, y) ≤ io(x, y) ≤ 1

d(x, o)
+

1

d(y, o)
(3)

A sphericalization of a metric space (X, d) through the point o is defined in an analogous

way. The sphericalization of (X, d) is (Xo, d̂) where d̂ is defined below.

so(x, y) ≡ d(x, y)

(1 + d(x, o))(1 + d(y, o))
(4)

d̂(x, y) ≡ inf{Σk
i=1so(xi, xi−1 : x = x0, ..., xk = y ∈ Xo} (5)

From these definitions, one can show that ∀x, y ∈ X

1

4
so(x, y) ≤ d̂(x, y) ≤ so(x, y) ≤ 1

1 + d(x, o)
+

1

1 + d(y, o)
(6)

Using inversions and sphericalizations, we can make estimates of the Ferrand distance

between two points, which is defined below.

Φ(x, y) ≡ inf
γ:xyy

∫
γ
ϕ(x)ds (7)

ϕ(x) ≡ sup
a,b∈∂Ω

d(a, b)

d(a, x)d(b, x)
(8)

where in the above definition, Ω ⊂ X such that Ω has at least two boundary points

(because without two boundary points, we cannot defined ϕ in the way we have). Another

important metric for studying the Ferrand metric is the quasi-hyperbolic metric, k(x, y).

This metric is defined below for a set Ω ⊂ X.

k(x, y) ≡ inf
γ:xyy

∫
γ
δ(x)ds (9)

δ(x) ≡ d(x, ∂Ω) = inf
a∈∂Ω

d(x, a) (10)

An important result of comparing δ to ϕ is that ∀x ∈ Ω

c

δ(x)
≤ ϕ(x) ≤ 2

δ(x)
(11)

where c ≡ 1
2
diam(Ω)
diam(∂Ω) .
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Above we defined ϕ(x) using a supremum over points in the boundary of Ω, but as we

will see later, we can actually also define ϕ using a supremum over points in the complement

of Ω. I will not address this until later, however. In fact, in order to show this, we must first

define what are called Apollonian balls and Apollonian spheres, which I will do now. The

Apollonian sphere and Apollonian ball with limit points p, q through the point ζ (where

p, q, ζ are all distinct points) is defined below.

AS(p, q|ζ) ≡ {x ∈ X : |x, p, q, ζ| = 1} (12)

AB(p, q|ζ) ≡ {x ∈ X : |x, p, q, ζ| < 1} (13)

Equivalently, we can define it in the more useful form (for our purposes) shown below.

AS(p, q|ζ) ≡ {x ∈ X : d(x, p) = td(x, q)} (14)

AB(p, q|ζ) ≡ {x ∈ X : d(x, p) < td(x, q)} (15)

where the parameter t is found by plugging ζ in for x. If we want to talk about a collection

of Apollonian spheres or balls determined by two points (we need three to determine a unique

AS), then we denote this by AS(p,q;t) or AB(p,q;t), respectively. t here is determined by a

third point in the way described above. We have now defined all the key quantities for this

study and we can now move on to proving some things using these definitions.

2 Inversions

Theorem 2.1. Let (X, d) be a geodesic metric space and let Ω ⊂ Xo = X\{o} (where o is

thought of as a generic base point which we invert through) be an open subspace of X with

at least two boundary points. Then the following inequality holds for all x ∈ Ω:

|x|2

4
ϕ(x) ≤ ϕo(x) ≤ 16|x|2ϕ(x)

where |x| ≡ d(x, o).

Proof. Let a, b ∈ Ω be phi-extremal points. That is, let ϕ(x) = τab(x). Then we automati-

cally get the following
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ϕo(x) = sup
ξ,η∈∂Ω

τ ξηo (x) ≥ τabo (x) =
do(a, b)

do(a, x)do(b, x)
(16)

Using (3), the above implies

ϕo(x) ≥ io(a, b)

4io(a, x)io(b, x)
=

d(a, b)

4d(a, x)d(b, x)
|x|2 =

1

4
ϕ(x)|x|2 (17)

This establishes the first inequality. Now let’s flip the argument around and get the

second inequality. Let a, b ∈ Ω now be ϕo-extremal points. That is, let ϕo(x) = τabo (x).

Now we get

ϕ(x) ≥ d(a, b)

d(a, x)d(b, x)
=

d(a, b)

d(a, x)d(b, x)

d(o, a)d(o, b)d(o, x)2

d(o, a)d(o, b)d(o, x)2
(18)

Now regroup the term on the right hand side and use (3) again to obtain

ϕ(x) ≥ io(a, b)

io(a, x)io(b, x)
d(x, o)−2 ≥ 1

16
ϕo(x)|x|−2 (19)

Lemma 2.2. dso is related to ds in the following way

dso =
ds

|x|2

Proof. To see this, we need to consider how paths are stretched/squished when we invert

our metric space. Consider the maximal and minimal stretching estimates given below:

L(x, f) ≡ lim sup
y→x

d(f(x), f(y))

d(x, y)
(20)

l(x, f) ≡ lim inf
y→x

d(f(x), f(y))

d(x, y)
(21)

Buckley et al. (2008) gives us that the identity map (Xo, d)→ (Xo, do) satisfies L(x, id) =

l(x, id) = 1
d(x,o)2

for every non-isolated point x ∈ X. This proves the Lemma.
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We will now use Lemma 2.2 and Theorem 2.1 together to show Theorem 2.3.

Theorem 2.3. Let (X, d) be a complete metric space and fix a base point o ∈ X. Also, let

Ω be an open subspace of Xo. Then the identity map (Ω,Φ)→id (Ω,Φo) is 16-bilipschitz.

Proof. Theorem 2.1 says that

16ϕ(x)|x|2 ≥ ϕo(x) ≥ 1

4
ϕ(x)|x|2 (22)

16ϕ(x)|x|2dso ≥ ϕo(x)dso ≥
1

4
ϕ(x)|x|2dso (23)

We now make use of Lemma 2.2 and see that the above implies

16ϕ(x)|x|2 ds
|x|2
≥ ϕo(x)dso ≥

1

4
ϕ(x)|x|2 ds

|x|2
≥ 1

4
ϕ(x)|x|2 ds

4|x|2
(24)

16ϕ(x)ds ≥ ϕo(x)dso ≥
1

16
ϕ(x)ds (25)

We now recognize that since Φ(x, y)=̇ infγ:xyy

∫
γ ϕ(x)ds and Φo(x, y)=̇ infγ:xyy

∫
γ ϕo(x)dso,

that the above inequality immediately implies that

16Φ(x, y) ≥ Φo(x, y) ≥ 1

16
Φ(x, y)∀x, y ∈ Ω. (26)

We are now in a position to use Theorem 2.3 to obtain a new estimate on the stretching

of the quasihyperbolic metric when it goes through an inversion. This statement is made

precise in the following theorem.

Theorem 2.4. Let (X, d) be a complete metric space and fix a base point o ∈ X. Let Ω be

an open subspace of Xo. Then the identity map (Ω, k) →id (Ω, ko) is 32
c -bilipschitz where

c ≡ 1
2( diam(Ω)
diam(∂Ω))

Proof. We know the following:
c

δ
≤ ϕ ≤ 2

δ
(27)

and

c

δo
≤ ϕo ≤

2

δo
(28)
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(27) implies that

c

ϕ
≤ δ ≤ 2

ϕ
(29)

ϕ

2
ds ≤ ds

δ
≤ ϕ

c
ds (30)

We can now make use of Theorem 2.3 to get

ϕodso
32

≤ ϕds

2
≤ ds

δ
≤ ϕds

c
≤ 16ϕodso

c
(31)

Now use (28) to get

cdso
32δo

≤ ds

δ
≤ 32dso

cδo
(32)

It immediately follows that the identity map (Ω, k)→id (Ω, ko) is 32
c -bilipschitz.

3 Sphericalizations

Theorem 3.1. Let (X, d) be a geodesic metric space and let Ω ⊂ Xo = X\{o} (where o is

thought of as a generic base point which we invert through) be an open subspace of X with

at least two boundary points. Then the following inequalities hold for all x ∈ Ω:

ϕ(x)(
1 + |x|2

4
) ≤ ϕ̂(x) ≤ 16(1 + |x|2)ϕ(x)

where |x| ≡ d(x, o).

Proof. Let a, b ∈ Ω be phi-extremal points. That is, let ϕ(x) = τab(x). Then we automati-

cally get the following

ϕ̂(x) ≥ d̂(a, b)

d̂(a, x)d̂(b, x)
. (33)

We have the following fact from Buckley et al. (2008) which we will make use of.
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1

4
so(x, y) ≤ d̂(x, y) ≤ so(x, y) (34)

where so is defined as follows.

so(x, y) =
d(x, y)

(1 + d(x, p))(1 + d(y, p))
(35)

Now, using (33), (34), and (35) we can get that

ϕ̂(x) ≥
1
4so(a, b)

so(a, x)so(b, x)
(36)

=⇒ ϕ̂(x) ≥ 1

4
(

d(a, b))

(1 + d(a, o))(1 + d(b, o))

(1 + d(a, o))(1 + d(x, o))(1 + d(b, o))(1 + d(x, o))

d(a, x)d(b, x)
)

(37)

=⇒ ϕ̂(x) ≥ 1

4

d(a, b)

d(a, x)d(b, x)
(1 + |x|)2 (38)

=⇒ ϕ̂(x) ≥ 1

4
ϕ(x)(1 + |x|)2 (39)

So this establishes the first inequality in our theorem. For the other inequality, just flip

this argument around. Assume that we have points a and b ∈ Ω such that ϕ̂(x) = τ̂ab(x).

Then we get automatically that

ϕ(x) ≥ d(a, b)

d(a, x)d(b, x)
(40)

Now we can multiply on top and bottom by a number of different factors such that we

can pull out factors of the so distance between two points.

ϕ(x) ≥ d(a, b)(1 + d(a, o))(1 + d(b, o))(1 + d(a, o))(1 + d(x, o))(1 + d(b, o))(1 + d(x, o))

d(a, x)d(b, x)(1 + d(a, o))(1 + d(b, o))(1 + d(a, o))(1 + d(x, o))(1 + d(b, o))(1 + d(x, o))

(41)

=⇒ ϕ(x) ≥ so(a, b)

so(a, x)so(b, x)

1

(1 + d(x, o))2
(42)

=⇒ ϕ(x) ≥ d̂o(a, b)

16d̂o(a, x)d̂o(b, x)

1

(1 + |x|)2
(43)

=⇒ ϕ(x) ≥ ϕ̂(x)

16(1 + |x|)2
(44)
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We will now look at how d̂s relates to ds.

Lemma 3.2. d̂s is related to ds in the following way:

d̂s =
ds

(1 + |x|)2

Proof. This proof is left to the reader, but can be shown in an analogous way to how Buckley

et al. (2008) show Lemma 2.2.

We now want to use Lemma 3.2 and Theorem 3.1 together to prove Theorem 3.3.

Theorem 3.3. Let (X, d) be a complete metric space and fix a base point o ∈ X. Also, let

Ω be an open subspace of Xo. Then the identity map (Ω,Φ)→id (Ω, Φ̂) is 16-bilipschitz.

Proof. Theorem 3.1 says that

ϕ(x)(1 + |x|)2

4
≤ ϕ̂(x) ≤ 16(1 + |x|)2ϕ(x) (45)

=⇒ ϕ(x)(1 + |x|)2

4
d̂s ≤ ϕ̂(x)d̂s ≤ 16(1 + |x|)2ϕ(x)d̂s (46)

Now we can use Lemma 3.2 to get the following.

ϕ(x)(1 + |x|)2

4

ds

4(1 + |x|)2
≤ ϕ(x)(1 + |x|)2

4

ds

(1 + |x|)2
≤ ϕ̂d̂s ≤ 16(1 + |x|)2ϕ(x)

ds

(1 + |x|)2

(47)

=⇒ ϕds

16
≤ ϕ̂d̂s ≤ 16ϕds (48)

We now recognize that since Φ(x, y)=̇ infγ:xyy

∫
γ ϕ(x)ds and Φ̂(x, y)=̇ infγ:xyy

∫
γ ϕ̂(x)d̂s,

that the above inequality immediately implies that

16Φ(x, y) ≥ Φ̂(x, y) ≥ 1

16
Φ(x, y)∀x, y ∈ Ω. (49)

Now we can use Theorem 3.3 to get a new estimate on the stretching of the quasihy-

perbolic metric when it goes through a sphericalization. This is spelled out in Theorem

3.4

8



Theorem 3.4. Let (X, d) be a complete metric space and fix a base point o ∈ X. Let Ω

be an open subspace of Xo. Then the identity map (Ω, k) →id (Ω, k̂) is 32
c -bilipschitz where

c ≡ 1
2( diam(Ω)
diam(∂Ω))

Proof. We know the following:
c

δ
≤ ϕ ≤ 2

δ
(50)

c

δ̂
≤ ϕ̂ ≤ 2

δ̂
(51)

(50) gives us that

c

ϕ
≤ δ ≤ 2

ϕ
(52)

=⇒ ϕ

2
ds ≤ ds

δ
≤ ϕ

c
ds (53)

We can now make use of Theorem 3.3 to get

ϕ̂d̂s

32
≤ ϕds

2
≤ ds

δ
≤ ϕds

c
≤ 16ϕ̂d̂s

c
(54)

Now, (51) can be used to get

cd̂s

32δ̂
≤ ds

δ
≤ 32d̂s

cδ̂
(55)

It immediately follows that the identity map (Ω, k)→id (Ω, k̂) is 32
c -bilipschitz.

4 Estimates for ϕ(x)

Theorem 4.1. Suppose (X, d) is a metric space and Ω ⊂ Xo is an open subspace of Xo.

Then

dodiameter of ∂Ω ≤ ϕ(o) ≤ 4(dodiameter of ∂Ω).
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Proof. Notice that (3) implies that for any a, b ∈ Xo,

1

4

d(a, b)

d(a, o)d(b, o)
≤ do(a, b) ≤

d(a, b)

d(a, o)d(b, o)
(56)

But the quantities on the right and left of this inequality are just τab(o). Thus,

1

4
τab(o) ≤ do(a, b) ≤ τab(o) (57)

1

4
sup
a,b∈∂Ω

τab(o) ≤ sup
a,b∈∂Ω

do(a, b) ≤ sup
a,b∈∂Ω

τab(o) (58)

1

4
ϕ(o) ≤ dodiameter of ∂Ω ≤ ϕ(o) (59)

1

4dodiameter of ∂Ω
≤ 1

ϕo
≤ 1

dodiameter of ∂Ω
(60)

dodiameter of ∂Ω ≤ ϕ(o) ≤ 4(dodiameter of ∂Ω) (61)

We will now establish that, even if we define ϕ(x) using points in the complement of

our set, that the supremum of τab(x) is established on the boundary of the set. Therefore,

defining ϕ(x) using points in the complement and defining it using points in the boundary

are equivalent ways of defining ϕ.

Theorem 4.2. The definitions ϕ(x) ≡ supa,b∈Ω τ
ab(x) and ϕ(x) ≡ supa,b∈∂Ω τ

ab(x) are

equivalent, where Ω = X\Ω is the complement of Ω.

Proof. We will show this by showing that τab(x) is maximized strictly when a and b are in

the boundary. As usual, begin with a geodesic metric space (X, d) and Ω ⊂ X where the

set Ω = X\Ω contains at least two points. Consider a, b ∈ Ω, x ∈ Ω, and the collection

of Apollonian spheres AS(x, b; t). It can be easily shown that t < t′ ⇔ AS(x, b; t) ⊂

AB(x, b; t′). This is an important fact to keep in mind during this proof.

Now think about a path, γ : [0, 1] → X, where γ(0) = x and γ(1) = a. There exists

a unique ζ ∈ |γ| such that AS(x, b|ζ) ∩ ∂Ω 6= ∅ and AS(x, b|ζ) ⊂ Ω. This should make

intuitive sense if you think about expanding spheres. Begin with an Apollonian sphere with

very small parameter t so that the entire sphere is contained within Ω. Now start increasing

t (this means expanding the sphere) until the sphere finally touches the boundary of Ω.
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Then, since γ is a path which begins inside Ω and ends outside Ω, there must be a first

point, ζ on that path where the sphere through x, b, ζ intersects the boundary of Ω and

where the Apollonian ball through x, b, ζ is still entirely contained within Ω.

Now notice that we can write the Apollonian parameter, t, in terms of τ ζb(x). By

definition, for an Apollonian sphere AS(x, b|ζ), we have our parameter t = d(x,ζ)
d(b,ζ) . Therefore,

t = 1
τζb(x)d(x,b)

. Now, we know that a is not contained within AB(x, b|ζ) since this ball is

entirely within Ω, and a, as we have constructed it, is in the complement of Ω. Therefore, if t′

is the Apollonian parameter such that AS(x, b; t′) = AS(x, b|a), then we have AS(x, b|ζ) =

AS(x, b; t) ⊂ AB(x, b; t′). But, as mentioned above, this immediately implies that t < t′.

Now we just write t and t′ in terms of τ ζb(x) and τab(x), respectively, and we get the

following.

t =
1

τ ζb(x)d(x, b)
(62)

t′ =
1

τab(x)d(x, b)
(63)

We’ve got that t < t′, therefore, 1
τζb(x)d(x,b)

< 1
τab(x)d(x,b)

. Cancelling factors of d(x, b)

and inverting the inequality, we get that τab(x) < τ ζb(x).

Now we can go through an analogous process looking at Apollonian objects with limit

points x and ζ and we can show that we can increase τ by using a point on the boundary

of Ω rather than the point b. This proves the theorem.
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