
5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 1/9

Predicting Play Calling Success in the NFL
In this notebook, I train various machine learning models to predict the success of a "run" or

"pass" play call in the NFL. The notebook is accompanied by another Jupyter Notebook

where I clean the NFL data for easy use by these algorithms. See that notebook if you want

to know more about the original dataset and how to clean data using the Pandas library.

Before I begin my analysis, I find it appropriate to present my opinion on how analytics

should be used in sports. While I think that analytics has a incredibly high use potential in

sports, I do see its limitations. Analytics recommendations should always be taken with the

knowledge of what assumptions the recommendation is making, the limitations of the

recommendation system, and the knowledge that probabilities are just probabilities, not

certainties. With that out of the way, let's dive into the analysis of this data set.

This notebook presents the prediction accuracy of four different machine learning

algorithms as applied to the NFL Play-by-Play data set found here

(https://www.kaggle.com/datasets/toddsteussie/nfl-play-statistics-dataset-2004-to-

present). Three of the algorithms I use are tree-based machine learning algorithms (random

forest with 2 different representations of the data and one boosted tree algorithm) and one

of them is a neural network.

My goal with this algorithm is to be able to recommend whether an offensive coordinator

should call a rushing or passing play based on statistical analysis of past data. What my

algorithm does is use pre-snap data to predict whether a rushing or passing play will be a

"success", "failure", or "neutral". The definition of what a success is is found below.

Rules For Success

Below are a description of the rules used by the add_success function to evaluate whether

each play was a success or not. I chose these rules based on what I feel should be

considered a successful football play. The rules are different depending on what down it is.

In the data set, successes are represented by 1, failures by -1, and neutral plays by 0.

Any down:

if you get a first down or score, that's a success

First down:

success = gaining (3/10) or greater of yards to the sticks

neutral = between 1 yard and (3/10) of yards to the sticks

fail = 0 yards or negative yards

Second down:

https://www.kaggle.com/datasets/toddsteussie/nfl-play-statistics-dataset-2004-to-present

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 2/9

success = gaining (1/2) or greater of yards to the sticks

neutral = between 1 yard and (1/2) of yards to the sticks

fail = 0 or negative yards

Third down:

success = first down

neutral = nothing

fail = not first down

Fourth down:

success = first down

neutral = nothing

fail = not first down

Results

I find it useful to present the results of the analysis first before presenting the analysis itself.

In my opinion, the best metric to decide which algorithm is "best" in this context, is the

algorithms recall precentage for successful plays. This is the percentage of times that my

algorithm predicts a successful play, where the play is, in fact, successful. In other words, if

my algorithm predicts you will have a successful play-call, then I have a 57% chance of

being right. This may sound low, but just consider the following fact: less than 49% of total

play calls end up in a success. We can reasonably assume that every play call made by an

offensive coordinator/head coach is predicted to be a success, therefore my best algorithm

beats the average head coach by roughly 8%!!

A table summarizing each of the algorithms results is show below. Remember that (at least

in my opinion) the precision on successful plays is the most important metric.

Random Forest with unnormalized data

 precision recall f1-score support

 failed play 0.54 0.48 0.51 78361

 neutral play 0.44 0.20 0.28 26532

successful play 0.55 0.67 0.61 102256

 accuracy 0.54 207149

 macro avg 0.51 0.45 0.46 207149

 weighted avg 0.53 0.54 0.53 207149

Random Forest with noramlized data

In [43]: print(skl.metrics.classification_report(y_test, preds, target_names=target_name

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 3/9

 precision recall f1-score support

 failed play 0.55 0.45 0.50 78361

 neutral play 0.42 0.24 0.31 26532

successful play 0.55 0.69 0.62 102256

 accuracy 0.54 207149

 macro avg 0.51 0.46 0.47 207149

 weighted avg 0.54 0.54 0.53 207149

XGBoost Boosted Trees

 precision recall f1-score support

 failed play 0.53 0.52 0.53 78361

 neutral play 0.38 0.34 0.36 26532

successful play 0.58 0.61 0.60 102256

 accuracy 0.54 207149

 macro avg 0.50 0.49 0.49 207149

 weighted avg 0.54 0.54 0.54 207149

TensorFlow Neural Network

 precision recall f1-score support

 failed play 0.62 0.39 0.48 78361

 neutral play 0.50 0.24 0.33 26532

successful play 0.56 0.80 0.66 102256

 accuracy 0.57 207149

 macro avg 0.56 0.48 0.49 207149

 weighted avg 0.58 0.57 0.55 207149

Analysis
Presented below is the full code used to train each of the algorithms on our data set.

In [44]: print(skl.metrics.classification_report(y_trans_test, preds_trans, target_names

In [50]: print(skl.metrics.classification_report(y_test, xgb_preds, target_names=target_

In [51]: print(skl.metrics.classification_report(y_test, preds_nn, target_names=target_n

In [2]: %%capture

import numpy as np

import pandas as pd

import sklearn as skl

from sklearn import preprocessing

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.compose import ColumnTransformer

from sklearn.compose import make_column_transformer

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 4/9

from sklearn.preprocessing import StandardScaler

import tensorflow as tf

from tensorflow import keras

import keras_tuner as kt

import matplotlib.pyplot as plt

import seaborn as sns

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 5/9

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorf
low/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1typ
e' as a synonym of type is deprecated; in a future version of numpy, it will b
e understood as (type, (1,)) / '(1,)type'.

 _np_qint8 = np.dtype([("qint8", np.int8, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorf
low/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1typ
e' as a synonym of type is deprecated; in a future version of numpy, it will b
e understood as (type, (1,)) / '(1,)type'.

 _np_quint8 = np.dtype([("quint8", np.uint8, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorf
low/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1typ
e' as a synonym of type is deprecated; in a future version of numpy, it will b
e understood as (type, (1,)) / '(1,)type'.

 _np_qint16 = np.dtype([("qint16", np.int16, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorf
low/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1typ
e' as a synonym of type is deprecated; in a future version of numpy, it will b
e understood as (type, (1,)) / '(1,)type'.

 _np_quint16 = np.dtype([("quint16", np.uint16, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorf
low/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1typ
e' as a synonym of type is deprecated; in a future version of numpy, it will b
e understood as (type, (1,)) / '(1,)type'.

 _np_qint32 = np.dtype([("qint32", np.int32, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorf
low/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1typ
e' as a synonym of type is deprecated; in a future version of numpy, it will b
e understood as (type, (1,)) / '(1,)type'.

 np_resource = np.dtype([("resource", np.ubyte, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorb
oard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of numpy, it w
ill be understood as (type, (1,)) / '(1,)type'.

 _np_qint8 = np.dtype([("qint8", np.int8, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorb
oard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of numpy, it w
ill be understood as (type, (1,)) / '(1,)type'.

 _np_quint8 = np.dtype([("quint8", np.uint8, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorb
oard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of numpy, it w
ill be understood as (type, (1,)) / '(1,)type'.

 _np_qint16 = np.dtype([("qint16", np.int16, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorb
oard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of numpy, it w
ill be understood as (type, (1,)) / '(1,)type'.

 _np_quint16 = np.dtype([("quint16", np.uint16, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorb
oard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of numpy, it w
ill be understood as (type, (1,)) / '(1,)type'.

 _np_qint32 = np.dtype([("qint32", np.int32, 1)])

/Users/Michaelray/opt/anaconda3/envs/local/lib/python3.7/site-packages/tensorb
oard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or
'1type' as a synonym of type is deprecated; in a future version of numpy, it w
ill be understood as (type, (1,)) / '(1,)type'.

 np_resource = np.dtype([("resource", np.ubyte, 1)])

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 6/9

/Users/Michaelray/Documents/NFL_project/archive (3)

Random Forest with unnormalized data

 precision recall f1-score support

 failed play 0.54 0.48 0.51 78361

 neutral play 0.44 0.20 0.28 26532

successful play 0.55 0.67 0.61 102256

 accuracy 0.54 207149

 macro avg 0.51 0.45 0.46 207149

 weighted avg 0.53 0.54 0.53 207149

Random Forest with normalized data

In [3]: cd archive\ (3)

In [4]: md = pd.read_csv('model_data.csv')

md = md.drop(columns=['Unnamed: 0'])

In [5]: X, y = md.drop(columns=['success']), md['success']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, rando

In [41]: %%capture

rf = RandomForestClassifier()

rf.fit(X_train, y_train)

In [42]: target_names = ['failed play', 'neutral play', 'successful play']

preds = rf.predict(X_test)

print(skl.metrics.classification_report(y_test, preds, target_names=target_name

In [8]: cols = ['playId', 'gameId', 'playSequence', 'quarter', 'playNumberByTeam',

 'gameClock', 'down', 'distance', 'distanceToGoalPre', 'evPre',
 'homeScorePre', 'visitingScorePre', 'huddle',

 'Bears home', 'Bengals home', 'Bills home',

 'Broncos home', 'Browns home', 'Buccaneers home', 'Cardinals home
 'Chiefs home', 'Colts home', 'Cowboys home', 'Dolphins home', 'Ea
 'Falcons home', 'Giants home', 'Jaguars home', 'Jets home', 'Lion
 'Niners home', 'Packers home', 'Panthers home', 'Patriots home',
 'Rams home', 'Ravens home', 'Saints home', 'Seahawks home', 'Stee
 'Titans home', 'Vikings home', 'Washington home', 'Bears away', '
 'Broncos away', 'Browns away', 'Buccaneers away', 'Cardinals away
 'Chiefs away', 'Colts away', 'Cowboys away', 'Dolphins away', 'Ea
 'Giants away', 'Jaguars away', 'Jets away', 'Lions away', 'Niners
 'Panthers away', 'Patriots away', 'Raiders away', 'Rams away', 'R
 'Seahawks away', 'Steelers away', 'Texans away', 'Titans away', '

 'homeTeamPossession', 'pass', 'rush', 'success']

normalizables = ['playId', 'gameId', 'playSequence', 'quarter', 'playNumberByTe
 'gameClock', 'down', 'distance', 'distanceToGoalPre', 'evPre',
 'homeScorePre', 'visitingScorePre']

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 7/9

 precision recall f1-score support

 failed play 0.55 0.45 0.50 78361

 neutral play 0.42 0.24 0.31 26532

successful play 0.55 0.69 0.62 102256

 accuracy 0.54 207149

 macro avg 0.51 0.46 0.47 207149

 weighted avg 0.54 0.54 0.53 207149

XG Boost

 precision recall f1-score support

 failed play 0.53 0.52 0.53 78361

 neutral play 0.38 0.34 0.36 26532

successful play 0.58 0.61 0.60 102256

 accuracy 0.54 207149

 macro avg 0.50 0.49 0.49 207149

 weighted avg 0.54 0.54 0.54 207149

In [9]: #Normalize all numerical variables

scaler = StandardScaler()

ct = make_column_transformer((scaler, normalizables), remainder='passthrough')

md_trans = ct.fit_transform(md)

md_trans = pd.DataFrame(md_trans, columns=cols)

In [10]: #Make new test, train data

X_trans, y_trans = md_trans.drop(columns=['success']), md_trans['success']

X_trans_train, X_trans_test, y_trans_train, y_trans_test = train_test_split(X_t

In [11]: %%capture

rf2 = RandomForestClassifier()

rf2.fit(X_trans_train, y_trans_train)

preds_trans = rf2.predict(X_trans_test)

In [12]: print(skl.metrics.classification_report(y_trans_test, preds_trans, target_names

In [46]: import xgboost as xgb

In [47]: %%capture

#Higher lambda and higher gamma makes a more conservative tree

#Higher max_deptch means more likelihood of overfitting

xgb_classifier = xgb.XGBClassifier(

 n_estimators=100,

 reg_lambda=1,

 gamma=0,

 max_depth=3

)

xgb_classifier.fit(X_trans_train, y_train_nn)

xgb_preds = np.argmax(xgb_classifier.predict(X_trans_test), axis=1)

In [49]: target_names = ['failed play', 'neutral play', 'successful play']

print(skl.metrics.classification_report(y_test, xgb_preds, target_names=target_

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 8/9

Neural Network

WARNING:tensorflow:From /Users/Michaelray/opt/anaconda3/envs/local/lib/python
3.7/site-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScal
ing.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated an
d will be removed in a future version.

Instructions for updating:

Call initializer instance with the dtype argument instead of passing it to the
constructor

2022-05-15 16:04:11.840075: I tensorflow/core/platform/cpu_feature_guard.cc:14
2] Your CPU supports instructions that this TensorFlow binary was not compiled
to use: AVX2 FMA

In [32]: #To use loss function in NN, we need to one-hot encode the target variables

y_train_nn = pd.get_dummies(y_train)

#y_train_nn = y_train_nn.rename(columns = {-1 : 'failedPlay', 0 : 'neutralPlay
y_test_nn = pd.get_dummies(y_test)

#y_test_nn = y_test_nn.rename(columns = {-1 : 'failedPlay', 0 : 'neutralPlay',

In [33]: # Tranform target data from -1, 0, 1 to 0, 1, 2

X, y = md.drop(columns=['success']), md['success']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, rando
y_train.loc[y_train==1] = 2

y_train.loc[y_train==0] = 1

y_train.loc[y_train==(-1)] = 0

y_test.loc[y_test==1] = 2

y_test.loc[y_test==0] = 1

y_test.loc[y_test==(-1)] = 0

y_train_nn = pd.get_dummies(y_train)

y_test_nn = pd.get_dummies(y_test)

In [34]: %%capture

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.InputLayer(input_shape = (X_train.shape[1],)))

model.add(tf.keras.layers.Dense(18, activation='relu'))

model.add(tf.keras.layers.Dense(9, activation='relu'))

model.add(tf.keras.layers.Dense(3, activation = 'softmax'))

model.compile(optimizer = 'adam',

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=F
 metrics = ['accuracy'])

model.fit(X_trans_train, y_train, epochs = 10)

In [35]: preds_nn = np.argmax(model.predict(X_trans_test), axis=1)

target_names = ['failed play', 'neutral play', 'successful play']

print(skl.metrics.classification_report(y_test, preds_nn, target_names=target_n

5/15/22, 4:15 PM Model Training

localhost:8890/nbconvert/html/Documents/NFL_project/Model Training.ipynb?download=false 9/9

 precision recall f1-score support

 failed play 0.62 0.39 0.48 78361

 neutral play 0.50 0.24 0.33 26532

successful play 0.56 0.80 0.66 102256

 accuracy 0.57 207149

 macro avg 0.56 0.48 0.49 207149

 weighted avg 0.58 0.57 0.55 207149

