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Abstract—The moduli space of vacua is the term used to
describe the space of all the possible ground states of an N=4
supersymmetric Yang-Mills theory. In this paper, I will describe
this space of vacua and explore the properties of the theories
which this space describes. In particular, we will attempt to
understand what happens when we take limits in this space in
a specific way, corresponding to taking isogenies between the
abelian varieties associated to each point in the space.

I. INTRODUCTION

Throughout this paper, the term group will be used heavily
as well as some elementary group theory. It is not the goal
of this paper to describe group theory, and therefore, I will
simply refer the reader to [1] to learn more about the definition
of groups and some of their properties. Once a familiarity
with groups is established, all the reader will need to know
is physics at the undergraduate level in order to understand
this paper. To begin with, I will describe the physics setting
that we are working in. Through this physics setting, I will
show the importance of complex tori when talking about the
moduli space of vacua in an N=4 super Yang-Mills theory.
Once this importance is established, I will go on to talk
about polarizations of lattices and their connections to abelian
varieties before finally describing isogenies between abelian
varieties. Isogenies between abelian varieties and the induced
polarization due to an isogeny is the topic of my current
research with Dr. Argyres which will be continued at least
through the Spring 2021 semester.

A. Yang-Mills Theory

Yang-Mills theories are basic generalizations of electromag-
netism which arise from an underlying Lie group. Lie groups
are nothing more than a continuous group with a smooth
manifold structure. Each Lie group has an associated Lie
algebra, which can be thought of as the tangent space to the
Lie group at the identity element of the Lie group. This is
shown symbolically in eqn. 1 where G is the Lie group and
g is the Lie algebra.

g = TI(G) (1)

Every compact Lie group then has an associated Yang-
Mills theory which is constructed by taking a basis of the
Lie algebra and associating each basis vector with an operator
whose role is to create a massless spin-1 particle. The states
of these particles live in a Hilbert space which is infinite
dimensional. The basis of this Hilbert space consists of states
that represent any number of massless spin-1 particles in a
given system. So, inside of this Hilbert space there lives a
basis vector representing the state of a single massless spin-1
particle. There is also a basis vector representing the state of
two massless spin-1 particles, and three, and four, and so on
to infinity. To understand what this means physically, recall
that massless spin-1 particles in quantum electromagnetism
are photons. So in the case of a one-dimensional Lie algebra,
we have one operator which creates photons and the states
of these photons live in a Hilbert space whose basis vectors
describe an arbitrary number of photons living in a region of
space.

This is just the simple case of a one-dimensional Lie alge-
bra, however. In the more general case of an N-dimensional
Lie algebra, we get N different operators that each create their
own spin-1 particle (analogue of a photon). In other words, if
we have an N-dimensional Lie algebra, then our Yang-Mills
theory associated to this Lie algebra has N different kinds of
photons which all couple to matter with specific strengths! To
make this even more general, consider a Lie group G such
that dim(G) = D and rank(G) = N . The rank of a group
G is the smallest cardinality for a generating set of G. That
is, it is the smallest number of independent members of the
group such that combinations of these independent members
(and their inverses) can generate all the rest of the members
of the group. Now, the Yang-Mills theory associated to the
gauge group G has D massless spin-1 particles, of which N
are neutral (i.e. they don’t interact with each other and so are
analogous to photons) and the remaining D−N have charges
with respect to each of the N ”photons”.

To give us a better idea of what was said in the preceding
paragraphs, let’s return to the case of a one-dimensional Lie
algebra and in particular, we’ll pick the so-called u(1) Lie
algebra. The U(1) Lie group associated with the u(1) Lie



Fig. 1: This shows visually the U(1) Lie group and its
associated Lie algebra u(1). U(1) is isomorphic to the circle
S1 and u(1) is isomorphic to the real line R. This figure is
taken from [2].

algebra consists of all 1 by 1 unitary matrices. That is, it
consists of all complex numbers such that the number times
its complex conjugate is equal to one. Thus, the elements of
the U(1) Lie group are simply phases; that is, any element λ ∈
U(1) can be written as λ = eiφ for some φ ∈ R. So we have
learned that U(1) is isomorphic to the circle S1. Thinking of
u(1) then as the tangent space to U(1) at the identity element
of U(1) (that is, at the point (1, 0) ∈ R2), we see that u(1) is
just the real line R. This is shown visually in fig. 1. Thus the
Lie algebra u(1) has just one basis element and the Yang-Mills
theory associated to this Lie algebra has just one operator that
creates massless spin-1 particles. This operator turns out to
transform as a lorentz 4-vector and in the classical limit, is
the familiar vector potential from electromagnetism. This is
shown in eqn. 2.

Âµ(~x)→ (Φ(~x), ~A(~x)) (2)

The Lie group used to describe the standard model of
particle physics is a bit more complicated than what is above;
it is U(1)×SU(2)×SU(3) where U(1) is again just complex
phases, and SU(N) is the group of all N by N unitary matrices
with determinant one. Starting from this, one can go through
the process of finding the corresponding Lie algebra, finding
the operators which create massless spin-1 particles and then
ultimately end up with the standard model of particle physics
after also coupling the resulting gauge fields to the matter
fields.

B. N=4 Super Yang-Mills Theories

This paper will be concerned with not just regular Yang-
Mills theories but Yang-Mills theories with an extra symmetry
added. This symmetry is called N=4 supersymmetry and
comes from adding in extra scalar and spinor fields into our
theory. This artificial symmetry has not been observed in the
real world but provides us an opportunity to compute things
that are extremely difficult to compute in the standard model
and other quantum field theories. This means that we can learn
a lot of lessons about the real world by working with this toy
model.

Within the N=4 super Yang-Mills model, there exists what
is called a moduli space of vacua. This is the space of all the
possible ground states (minimum energy states) within an N=4
super Yang-Mills theory. It turns out that this space is actually
continuous and in particular, it has a manifold-like structure.
To give an example, if the underlying Lie group for the N=4
super Yang-Mills theory is SU(N), then this moduli space of
vacua (we’ll call it M ) is isomorphic to a 3(N − 1) complex
dimensional space modded out by a discrete group called the
Weyl group, named after Hermann Weyl. This Weyl group is
simply the group of permutations of N objects. Eqn. 4 shows
this.

M=̃C3(N−1)/Γ (3)
Γ=̇Weyl(SU(N)) = SN (4)

Some general remarks about notation here are in order.
When we write a space followed by a backslash and then
a group, we mean that any two elements in the space which
differ by the action of an element in the group are thought of
as the same element. This is made clear in eqn. 5 and eqn. 6
where eqn. 5 implies eqn. 6.

G = F/Γ (5)

G = {[f ] :f ∈ F} (6)
where [f1] ≡ [f2] iff ∃g ∈ Γ s.t. f2 = gf1

So, with this in mind, what eqn. 4 is telling us is that the
moduli space of vacua is a 3(N − 1) complex dimensional
space where points in that space are identified with one
another, if their coefficients are certain re-orderings of one
another. This will be expanded upon in section 5. To make this
more intuitive, let us consider the space N = R2/Γ. This space
is regular euclidean 2-space where we have identified any
points which are re-orderings of one another, so (a, b) ≡ (b, a).
Notice that the point (b, a) is just the point (a, b) flipped
through the line y = x. This means N can be represented by
just the portion of R2 that lies above (or equivalently, below)
the line y = x.

II. CHARGE LATTICES AND POLARIZATIONS

As mentioned in the preceding section, in a Yang-Mills
theory corresponding to a rank-N Lie algebra, there are N
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different massless spin-1 particles (”photons”) on the moduli
space. Therefore, in a theory like this, every massive particle
needs to have N different charges. To make this more concrete,
consider a rank-2 Lie algebra, meaning we have 2 different
massless spin-1 particles which can be thought of as two kinds
of photons. So in such a theory a proton, for example, would
have not one, but two electric charges. It would have a charge
e1 with respect to the first photon and a different charge e2

with respect to the second photon. A particle also, in general,
would have magnetic charges m1 and m2 with respect to each
of the photons. So each massive state carries with it a vector
(~e, ~m) of electric and magnetic charges.

So we’ve learned that on the moduli space of a Yang-Mills
theory, each massive particle has this vector of charges, but
there is more to it. Given a system of two particles, the Dirac
quantization condition gives us a constraint on what the charge
vectors of the two particles can be. This quantization condition
is stated in eqn. 7 where (~e, ~m)1 are the vectors of electric and
magnetic charge, respectively, for the first particle, and (~e, ~m)2

are the vectors of electric and magnetic charge, respectively,
for the second particle. The angle brackets represent some
antisymmetric bilinear pairing. Thus the Dirac quantization
condition requires that there exists some integral antisymmet-
ric bilinear pairing between the electric and magnetic charges
of two massive particles in a Yang-Mills theory.

〈(~e, ~m)1, (~e, ~m)2〉 ∈ Z (7)

After a bit of work, one can see that the Dirac quantization
condition implies that the charge vector (~e, ~m) of any particle
is a member of a rank 2(N − 1) lattice, where we are
working in the context of an SU(N) Yang-Mills theory with
N=4 supersymmetry. The quantity 〈(~e, ~m)1, (~e, ~m)2〉 in the
Dirac quantization condition is called the ”Dirac pairing” or
”polarization of the lattice of charges”. To be clear, a rank-
2r lattice in our context is the set of points {z ∈ Cr : z =
a1z1 + a2z2 + a3z3 + ...+ a2rz2r, ai ∈ Z, zi ∈ Cr are some
fixed vectors that are linearly independent over the reals}.

We say that the lattice is ”principally polarized” when the
electric and magnetic charges span the entire Z2(N−1) lattice
(this is notation for a rank-2(N−1) lattice) because when this
is the case, it is possible to write the quantization condition
as we have in eqn. 8 with the very simple looking matrix
in the middle (a matrix with zeros along the diagonal, the
identity matrix in the upper diagonal and minus the identity
in the lower diagonal). We can imagine, however, that the
charge vectors for a particle do not span the entire lattice, but
rather span just a sublattice. In this case, we no longer have
a principle polarization, and the matrix in eqn. 8 is no longer
this simple.

(~e, ~m)1

(
0 IN−1

−IN−1 0

)(
~e
~m

)
2

(8)

In the case that we have a non-principle polarization of our
charge lattice, there is a general theorem called ”the structure
theorem for finitely generated modules over a principle ideal

domain” which still gives us a general form for what the
polarization will look like (this theorem is proven in chapter
two, section six of [3]). This theorem tell us that there always
exists a basis of the lattice where the polarization will look
like what is shown in eqn. 9 where ∆ is given in eqns. 10 and
11.

(~e, ~m)1

(
0 ∆
−∆ 0

)(
~e
~m

)
2

(9)

∆ = diag{δ1, δ2, ..., δN−1}, δi ∈ N (10)

δi|δi+1, i ∈ {1, 2, ..., N − 2} (11)

III. ABELIAN VARIETIES

An algebraic variety is simply a space which can be
constructed as the zeros to a set of polynomial equations over
either the real or complex numbers. If the space which the
polynomial equations are written in happens to be a complex
projective space (more on projective spaces can be read about
in [5]) and the algebraic variety has a group structure, then the
resulting variety is called an ”abelian variety”. This defintion
turns out to be equivalent to defining an abelian variety as
a complex torus subject to some constraints. I will now first
show how to construct a complex torus, then I will explain
what the constraints are such that this torus is also an abelian
variety.

A N-dimensional complex torus can be constructed by
taking N-dimensional complex space and modding it out by a
rank 2N lattice. To illustrate this concept, I will take N to be
one. Any higher N is very hard to visualize because we are
already at a two complex dimensional (four real dimensional)
space being modded out by a rank four lattice. Fig. 2 shows
visually what it means to take a one complex dimensional
space and mod it out by a rank two lattice. As mentioned
before, the notation C/Λ means that any two points in C which
differ by a point in the set Λ = {n1λ1 + n2λ2 : n1, n2 ∈ Z}
are considered to be the same. The entire space C/Λ is then
represented by equivalence classes where for any z1, z2 ∈ C,
[z1] ≡ [z2] if and only if z1 − z2 ∈ Λ. So every equivalence
class has a representative which lives inside of this parallelo-
gram pictured on the left side of fig. 2. For this reason, we call
the pictured parallelogram a ”unit cell” of Λ. Now, we see that
each point along the left side of the unit cell is in the same
equivalence class as the point straight across from it on the
right side of the parallelogram (since these two points differ
by the vector λ1). So if we start at a point on the left hand
side of the parallelogram and move straight across, when we
hit the right side of the parallelogram, we are back at the same
point. So we can think of this as moving around a circle. This
is shown in the torus piece of fig. 2 where one loop around the
center of the torus is labeled as λ1. In a similar way, we can
see why λ2 is labelled by moving around the torus in the other
independent direction. Another way to think about this action
is by imagining you are holding a parallelogram shaped piece
of paper in your hand. The left and right sides are identified,
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Fig. 2: This shows a one complex dimensional torus being
constructed by taking the complex plane and modding it by
a rank-2 lattice. λ1 and λ2 here are the basis vectors of the
lattice Λ, X is the torus C/Λ, and π : C → X is the map
taking us from the complex plane into the torus. This figure
is taken from [5].

so you can represent this by bending the paper until the two
sides meet and then gluing those sides together. Now you have
a cylinder, but the caps of the cylinder are also identified. So
now you bend your cylinder so that the two caps of it meet,
and voilà, you have now created a torus.

It was mentioned above that in order for a complex torus
to also be an abelian variety, some constraints must be met
by the torus. These constraints have to do with the lattice Λ
that mods out the complex space. In the N = 1 case, that is,
when we take C modded by a rank-2 lattice, these constraints
are simply that λ1 = 1 and Im(λ2) > 0. This may seem
like a stringent condition, but no matter what λ1, λ2 we start
with, we can always, by a holomorphic change of coordinates,
move λ1 to the point 1 and then the condition just turns out
to be Im(λ′2) > 0 where λ′2 is whatever λ2 ends up being
after our holomorphic change of coordinates. A holomorphic
change of coordinates is just a change of coordinates in which
the function that does the action is holomorphic, i.e. if the
function is called f , then ∂f

∂z̄ = 0. This condition on f
is completely equivalent to the Cauchy-Riemann equations
which are a necessary and sufficient condition for a function
f to be complex differentiable.

Now, to be more general than what is shown above, con-
sider a torus CN/Λ where Λ is now a rank-2N lattice with
basis vectors e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ...,
eN = (0, 0, 0, ..., 1), eN+1 = (τ11, τ12, ..., τ1N ), eN+2 =
(τ21, τ22, ..., τ2N ), ..., e2N = (τN1, τN2, ..., τNN ) where
each ei ∈ CN . It is always possible to write the basis in
this way because, again, we can always use a holomorphic
change of coordinates to move the first N basis vectors to
vectors which have zeros in all but one component. If we
consider the last N basis vectors to make up the matrix shown
in eqn. 12 then the general condition which is necessary and
sufficient for the torus CN/Λ to also be an abelian variety
is that det(τ ij) 6= 0, τ ij = τ ji, and Im(τ ij) > 0 where the
last condition here means that the matrix made up of just the
imaginary part of each entry is a positive definite matrix (i.e.
it has all positive eigenvalues). Proving the equivalence of an
abelian variety defined as a projective algebraic variety and
defined as a complex torus under the above constraints is a

(a) An example lattice Λ. (b) An example lattice Λ′.

Fig. 3: These lattices are used to visualize an isogeny between
abelian varieties. Notice that Λ ⊂ Λ′.

non-trivial exercise and is given in [6].

τ ij =


τ11 τ12 ... τ1N

τ21 τ22 ... τ2N

...
...

...
...

τN1 τN2 ... τNN

 (12)

IV. ISOGENIES BETWEEN ABELIAN VARIETIES

An isogeny is as a structure preserving map between al-
gebraic groups (varieties that have a group structure) that is
surjective and has a finite kernel. ”Structure preserving” here
has a different meaning depending on the specific context of
the problem. When working in the context of linear algebra,
a structure preserving map is just a linear transformation, but
when working in group theory, a structure preserving map is
a group homomorphism because this kind of a map preserves
the notion of multiplication (i.e. f(ab) = f(a)f(b) ∀a, b).
Applying the definition of an isogeny to abelian varieties
defined as complex tori, we get that an isogeny between
abelian varieties is a surjective map h : X → X ′ with a
finite kernel where X = Cr/Λ and X ′ = Cr/Λ′ with Λ and
Λ′ being rank-2r lattices with Λ ⊂ Λ′. The index, n, of an
isogeny is defined to be |ker(h)| = |{x ∈ X : h(x) = 0}|.

To understand more intuitively what is meant by an isogeny,
it is best to consider a simple example which is illustrated in
fig. 3. Here we have two lattices Λ and Λ′ embedded in the
complex plane with Λ being a subset of Λ′. Let (1) ∈ C and
(i) ∈ C be a basis of Λ and ( 1

2 ) ∈ C and ( i2 ) ∈ C be a
basis of Λ′. Now consider X to be the torus C/Λ and X ′ to
be the torus C/Λ′. The isogeny h : X → X ′ then has kernel
ker(h) = {[0], [ 1

2 ], [ i2 ], [ 1
2 + i

2 ]} where I have written these
points in brackets to emphasize that the points in the torus are
equivalence classes. We see that because |ker(h)| = 4, this
particular isogeny has index 4. Another way people say this
is by writing [Λ′ : Λ] = 4. In general, we define [Λ′ : Λ] =
|ker(h)| where Λ and Λ′ have their usual interpretations as
the lattices which mod out the complex plane, giving us our
two tori. An equivalent way of thinking about the index of
an isogeny between abelian varieties is by looking at the area
covered by the unit cell of each torus. In our example above
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(fig. 3), the unit cell of Λ′ has area 1
4 while the unit cell of Λ

has area 1. Thus the index of the isogeny is 1
1/4 = 4.

We now consider the following question: if given a lattice
Λ′, what are the possible sublattices of Λ′, such that the
sublattice induces an isogeny of index n? [7] gives us the
answer. If we have a rank 2N lattice with basis given by
{e1, e2, ..., e2N}, then the possible inequivalent sublattices
(that is, lattices Λ ⊂ Λ′) that induce an index-n isogeny
have basis {b1, b2, ..., b2N} which is given in eqn. 13 with
constraints given in eqn.14. The constraints tell us that the
matrix in eqn. 13 has integers greater than zero along the
diagonal, zeros above the diagonal and each entry below
the diagonal must be between zero and whatever the corre-
sponding diagonal entry is directly above it. The crucial extra
constraint that is not shown in eqn. 14 is that the product of
the diagonal entries in this matrix is the index of the isogeny.


b1
b2
...

b2N

 =


n1 0 0 0 . . .
m1,1 n2 0 0 . . .
m2,1 m2,2 n3 0 . . .

...
...

...
...

...
m2N,1 m2N,2 m2N,3 . . . n2N



e1

e2

...
e2N


(13)

mi,j , ni ∈ Z
ni > 0 (14)

0 ≤ mi,j < nj ∀i, j ∈ Z

This looks a bit complicated, so we will reduce it to a simple
example to see what it is telling us. In the case that N = 1 and
we are looking for index 2 isogenies, we have eqn. 15 where
n1 and n2 are integers greater than zero such that n1n2 = 2
and m is between zero and n1.(

b1
b2

)
=

(
n1 0
m n2

)(
e1

e2

)
(15)

After a bit of algebra, it is not hard to see that this implies
the only possible sublattices which induce an index-2 isogeny
have bases given by {e1, 2e2}, {2e1, e2}, or {2e1, e1 + e2}.
So now we have built up some machinery in talking about
abelian varieties and isogenies between them. We will now
talk in depth about the structure of the moduli space of vacua
in an SU(N) super Yang-Mills theory.

V. MODULI SPACE OF VACUA FOR SU(N) SUPER
YANG-MILLS THEORIES

As mentioned in section 1.B, for a Yang-Mills theory with
N=4 supersymmetry which is built from the SU(N) group, the
moduli space of vacua is C3(N−1)/Γ where Γ is the permu-
tation group on N elements. This space can be simplified a
bit, however. We will split the 3(N − 1) copies of C into
three copies of CN−1 because the group Γ acts on all of these
independently and in equivalent ways. Additionally, each copy
of CN−1 will be thought of as being embedded into CN but
with the constraint that the sum of all the components sum to

zero. Thus our CN−1 is being thought of as an N−1 (complex)
dimensional slice out of an N (complex) dimensional space.
So now our problem is to look at what the space CN−1/Γ
looks like. To get a feel for this, we’ll do two examples. First,
we’ll use the SU(2) group to construct the Yang-Mills theory
and then we’ll use the SU(3) group. We will see that in the
SU(2) case, our geometric picture of what’s going on will be
very helpful and will give us a nice intuition for what’s going
on. In the SU(3) case, however, we will see how things very
quickly become much more complicated and we must rely
further on the algebra of the problem. After looking at these
low dimensional examples, we will move on to the case of the
more general SU(N) Lie group.

A. SU(2) Case

Here our moduli space of vacua looks like C3(2−1)/Γ =
C3/Γ. But as we said before, each of the three copies of C here
get acted on by Γ independently, so we can figure everything
out by considering C/Γ and then at the end remembering that
the full result is whatever we get ”times three”. So, to begin
recall that we want to think of C as being a slice of C2. So the
coordinates of our moduli space will be labeled as (z1, z2) ∈
C2 under the constraint that z1 + z2 = 0 =⇒ z1 = −z2.
The group Γ here is the permutation group on two elements.
It is easy to see that this group itself has just two elements,
namely, the identity element that takes (z1, z2) to (z1, z2), and
the element that swaps the two coordinates. Thus Γ has only
one generator and it is the elements g1 : (z1, z2)→ (z2, z1).

In general, when we take a space with a manifold structure
and mod it out by a group, we get something called an
orbifold. Roughly, this is a space that is smooth at a generic
point, but has singularities at others. The singularities are at
precisely the points which are fixed by the group action. With
this in mind, let’s figure out which points in C2 are fixed by Γ.
If a point z is fixed by Γ, then that means that there exists some
g ∈ Γ which is not the identity element such that g(z) = z. In
this context, this means that there is some (z1, z2) such that
g1((z1, z2)) = (z1, z2). But g1((z1, z2)) = (z2, z1). So this
implies that (z2, z1) = (z1, z2). Thus, the points which are
fixed are the points (z1, z2) such that z1 = z2. But recall that
we have the constraint z1 + z2 = 0. So this means the space
C/Γ has just one singularity, and it is the point (0, 0).

Now looking at the space C/Γ more generally, notice that
Γ is isomorphic to the group Z2. A generator of the group
Z2 is the map g2 : eiθ → ei(θ+π). We can think of it in
this way because if we apply g2 twice, we get back to the
original point. So C/Γ is the complex plane where points
which differ by an angle of π radians are identified. To
visualize this space, imagine taking a sheet of paper (this
is the complex plane), cutting a slit in it along the minus-
x axis, and then folding the paper into itself so that points
which were originally separated by a 180 degree rotation are
now on top of one another. Now you have a cone, and this
is exactly the geometric interpretation of the moduli space of
vacua of the SU(2) super Yang-Mills theory that we sought out.
In addition, we recognize that the origin is clearly a singularity
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here since the curvature become infinite (it is the tip of the
cone). Remember, however, that this is just one of three copies
of the complex plane that we originally started with. The total
moduli space has complex dimension three and is thus already
extremely difficult to picture.

B. SU(3) Case

Now we will consider the moduli space of vacua of the super
Yang-Mills theory arising from the underlying group SU(3).
Here, our moduli space of vacua looks like C3(3−1)/Γ =
C6/Γ. Once again, however, we will just begin by looking
at C2/Γ where Γ is now the permutation group acting on
three objects and we think of C2 as being embedded in C3

subject to the constraint z1 + z2 + z3 = 0 where z1, z2, z3 are
the coordinates in C3. There are two generators to the group
of permutations on three objects. They can be taken to be a
few different specific members of the group, but I will take
them to be the elements g3 : (z1, z2, z3) → (z2, z1, z3) and
g4 : (z1, z2, z3) → (z3, z1, z2). There are six total elements
in Γ which can all be built out of g3 and g4. Other than
the identity, g3, and g4, the remaining elements of Γ are
g−1

4 g3g4 : (z1, z2, z3)→ (z3, z2, z1), g4g3g
−1
4 : (z1, z2, z3)→

(z1, z3, z2), and g2
4 : (z1, z2, z3)→ (z2, z3, z1). Let’s find out

what the fixed points are of each of these elements.
I will simply state the results of finding the fixed points of

each of these elements but it is easy to check that it is true
just by applying the group element to the corresponding fixed
point. The fixed points of g3 are any points with z1 = z2. The
fixed points of g4 are any points which have z1 = z2 = z3,
but remembering that we require z1 + z2 + z3 = 0, this
means that z1 = z2 = z3 = 0. The fixed points of g−1

4 g3g4

are the points with z2 = z3, and finally the fixed points of
g4g3g

−1
4 are the points with z1 = z3. Notice also that the

fixed points of g2
4 are exactly the fixed points of g4, that

is, z1 = z2 = z3 = 0. So now we impose the condition
that the sum of the components equals zero to get rid of,
say, z3. The result of this is that our space of fixed points,
that is, the space of the singularities of our space of vacua,
are the following sets of points: (0, 0, 0), {(z1, z2) : z1 =
z2}, {(z1, z2) : z1 = −2z2}, {(z1, z2) : z1 = − 1

2z2}. This
has been shown pictorially in fig. 4. This figure needs to
be interpreted correctly though. The entire space here is C2,
which is actually a four (real) dimensional space. So these
points of singularities which look like lines in the picture
are actually two (real) dimensional planes of singular space,
analogous to the tip of the cone that we saw in the example
with the SU(2) Lie group.

There is one further complication. Recall that the lines
pictured in fig. 4 are the lines z1 = z2, z2 = z3, and z1 = z3.
But g3 cyclically permutes the coordinates, so it takes the
equation z1 = z2 to the equation z2 = z3. Similarly, g3 takes
the equation z2 = z3 to z3 = z1 and it takes z3 = z1 to
z1 = z2. So all of these equations are related to one another by
g3 and thus are all actually the same line in our moduli space
because our moduli space is constructed by taking C2 and
modding it out by a group which contains g3. So these three

Fig. 4: This shows the singularities of C2/Γ which were found
by computing the fixed points of the group Γ. The horizontal
axis is meant to represent one complex variable z1 and the
vertical axis represents another complex variable z2.

lines all collapse onto one another when the space is modded
out by Γ. The total space is what is pictured in fig. 4 but folded
around itself in a way analogous to how we constructed the
cone in the SU(2) case. The folds are just right so that all the
lines in the figure fall onto one another. The resulting total
moduli space looks like the four (real) dimensional analogue of
a cone with a tip corresponding to the origin and an entire two
(real) dimensional linear subspace of the cone being singular.
This is shown in fig. 5 where the orange line is supposed to
represent the two (real) dimensional singular subspace. The
point on top is also singular. Remember, though, that this is
just one-third of the story. The total moduli space looks like
three copies of what was described above. This illustrates the
purpose of my statement previously that these spaces of vacua
become complicated quite quickly and that we should rely on
algebra rather than geometry to tell us what’s going on. It’s
essentially impossible to picture this space in a perfect way
where you could make meaningful predictions from the picture
because in order to do so, you would need to be picturing a
quite complicated four (real) dimensional space and even then
you’re only talking about a four (real) dimensional slice of a
twelve (real) dimensional space.

C. SU(N) Case

Now we move on to the general case of an SU(N) super
Yang-Mills theory. It will be helpful to keep the above low
dimensional examples in mind when talking about this general
case so that one can have some sort of intuition for what’s
going on. As a reminder, once again the moduli space of vacua
here looks like M = C3(N−1)/Γ where Γ is the permutation
group on N elements. At the fixed points of Γ, just as we
saw in the previous example, we get singularities. These
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Fig. 5: Shown here is a cartoon version of what the moduli
space of vacua for an SU(3) Yang-Mills theory is. The actual
space is the four dimensional analogue of a cone. The orange
slice represents a 2 dimensional subspace which is singular.

singularities could be individual points but they could also
be lines, planes, or even hyper-planes in higher dimensions.
At a generic point, that is, a non-fixed point in CN−1 (because
remember Γ act independently on the three copies of CN−1

that make up the moduli space), we just have flat N − 1
complex dimensional space but maybe folded into a hyper-
cone like structure. At these generic points, the operators of
the Yang-Mills theory which create massless spin-1 particles
are exactly the same operators as in an N=4 super U(1)N−1

Yang-Mills theory. U(1) is the guage group of quantum
electrodynamics, and the massless spin-1 fields of this theory
are just photon fields. So, on a generic point of our moduli
space of vacua, our theory looks exactly like N − 1 copies
of electromagnetism. That is, we have what was described in
the introduction as a situation where there are N − 1 types
of photon analogues meaning every massive particle carries
N − 1 charges.

On a non-generic point of the space of vacua, we have
nested singular subspaces. The gauge groups of these singular
subspaces are nested as well in the following way for an
SU(N) Yang-Mills theory. The generic point, as mentioned
before, has a gauge group U(1)N−1 and is 3(N − 1) (com-
plex) dimensional. Within the total space, there is a singular
subspace which has gauge group SU(2)× U(1)N−2 and has
(complex) dimension 3(N−2). Within this singular subspace,
there is another singular subspace which has gauge group
SU(3) × U(1)N−3 and has (complex) dimension 3(N − 3).
This continues on until we finally get to the case where
we have a three (complex) dimensional subspace with gauge
group SU(N − 1)× U(1).

VI. THE QUESTION AT HAND

So we know what the moduli space of vacua looks like for
an SU(N) super Yang-Mills theory. We are now in a position
to present the question which is being explored through our
current research. We want to understand what happens to the
polarization of charge lattices in the space of vacua as we
approach the singular subspaces. In particular, we want to
learn about the charge lattices of SU(M) (with M < N )
sub-theories living in the singularities of the moduli space
of the SU(N) theories. These charge lattices will have rank
2(M −1) and we want to understand how this rank-2(M −1)
lattice will be embedded in the larger rank-2(N − 1) lattice
which comes from the total SU(N) theory. The physics of
our situation tells us that this sublattice will induce an isogeny
between the corresponding abelian varieties associated to the
charge lattices. Then finally, our quest is to find out what the
δi factors from eqn. 10 are for the polarization of the lattice
sitting inside the singular subspace.

Understanding this one question involves understanding the
long story of the moduli space of vacua of Yang-Mills theories
in addition to some specialized math topics, but I hope that
I have laid out in a clear way all the necessary background
for this question. The main picture to keep in mind is that we
are working in this moduli space of vacua (which has a very
weird shape) and every point in this space has a charge lattice
associated with it. This lattice itself sits inside of a complex
space, so instead of thinking of the charge lattices, we can
think of the complex space mod the charge lattices, which
are called abelian varieties (tori). So each point in the moduli
space has a torus associated with it and we want to understand
what happens to the polarization of the torus as we approach
(in the moduli space) the singular subspaces of the moduli
space. Approaching these singular subspaces corresponds to
taking isogenies between the abelian varieties.
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